
JOIN-ACCUMULATE MACHINE: A SEMI-COHERENT SCALABLE TRUSTLESS VM
DRAFT 0.1.1 - April 18, 2024

DR. GAVIN WOOD
FOUNDER, POLKADOT & ETHEREUM

GAVIN@PARITY.IO

Abstract. We present a comprehensive and formal definition of Jam, a protocol combining elements of both Polkadot
and Ethereum. In a single coherent model, Jam provides a global singleton permissionless object environment—much
like the smart-contract environment pioneered by Ethereum—paired with secure sideband computation parallelized
over a scalable node network, a proposition pioneered by Polkadot.

Jam introduces a decentralized hybrid system offering smart-contract functionality structured around a secure and
scalable in-core/on-chain dualism. While the smart-contract functionality implies some similarities with Ethereum’s
paradigm, the overall model of the service offered is driven largely by underlying architecture of Polkadot.

Jam is permissionless in nature, allowing anyone to deploy code as a service on it for a fee commensurate with the
resources this code utilizes and to induce execution of this code through the procurement and allocation of core-time,
a metric of resilient and ubiquitous computation, somewhat similar to the purchasing of gas in Ethereum. We already
envision a Polkadot-compatible CoreChains service.

1. Introduction

1.1. Nomenclature. In this paper, we introduce a de-
centralized, crypto-economic protocol to which the Polka-
dot Network could conceivably transition itself in a major
revision. Following this eventuality (which must not be
taken for granted since Polkadot is a decentralized net-
work) this protocol might also become known as Polkadot
or some derivation thereof. However, at this stage this is
not the case, therefore our proposed protocol will for the
present be known as Jam.

An early, unrefined, version of this protocol was
first proposed in Polkadot Fellowship rfc31, known
as CoreJam. CoreJam takes its name after the col-
lect/refine/join/accumulate model of computation at the
heart of its service proposition. While the CoreJam rfc
suggested an incomplete, scope-limited alteration to the
Polkadot protocol, Jam refers to a complete and coherent
overall blockchain protocol.

1.2. Driving Factors. Within the realm of blockchain
and the wider Web3, we are driven by the need first and
foremost to deliver resilience. A proper Web3 digital sys-
tem should honor a declared service profile—and ideally

meet even perceived expectations—regardless of the de-
sires, wealth or power of any economic actors including in-
dividuals, organizations and, indeed, other Web3 systems.
Inevitably this is aspirational, and we must be pragmatic
over how perfectly this may really be delivered. Nonethe-
less, a Web3 system should aim to provide such radically
strong guarantees that, for practical purposes, the system
may be described as unstoppable.

While Bitcoin is, perhaps, the first example of such a
system within the economic domain, it was not general
purpose in terms of the nature of the service it offered. A
rules-based service is only as useful as the generality of the
rules which may be conceived and placed within it. Bit-
coin’s rules allowed for an initial use-case, namely a fixed-
issuance token, ownership of which is well-approximated
and autonomously enforced through knowledge of a secret,
as well as some further elaborations on this theme.

Later, Ethereum would provide a categorically more
general-purpose rule set, one which was practically Tur-
ing complete.1 In the context of Web3 where we are aim-
ing to deliver a massively multiuser application platform,
generality is crucial, and thus we take this as a given.

Beyond resilience and generality, things get more in-
teresting, and we must look a little deeper to understand

1The gas mechanism did restrict what programs can execute on it by placing an upper bound on the number of steps which may be
executed, but some restriction to avoid infinite-computation must surely be introduced in a permissionless setting.

1

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 2

what our driving factors are. For the present purposes,
we identify three additional goals:

(1) Resilience: highly resistant from being stopped,
corrupted and censored.

(2) Generality: able to perform Turing-complete
computation.

(3) Performance: able to perform computation
quickly and at low cost.

(4) Coherency: the causal relationship possible be-
tween different elements of state and how thus
how well individual applications may be com-
posed.

(5) Accessibility: negligible barriers to innovation;
easy, fast, cheap and permissionless.

As a declared Web3 technology, we make an implicit
assumption of the first two items. Interestingly, items 3
and 4 are antagonistic according to an information the-
oretic principle which we are sure must already exist in
some form but are nonetheless unaware of a name for it.
For argument’s sake we shall name it size-synchrony an-
tagonism.

1.3. Scaling under Size-Synchrony Antagonism.
Size-synchrony antagonism is a simple principle implying
that as the state-space of information systems grow, then
the system necessarily becomes less synchronous. The ar-
gument goes:

(1) The more state a system utilizes for its data-
processing, the greater the amount of space this
state must occupy.

(2) The more space used, then the greater the
mean and variance of distances between state-
components.

(3) As the mean and variance increase, then interac-
tions become slower and subsystems must manage
the possibility that distances between interdepen-
dent components of state could be materially dif-
ferent, requiring asynchrony.

This assumes perfect coherency of the system’s state.
Setting the question of overall security aside for a moment,
we can avoid this rule by applying the divide and conquer
maxim and fragmenting the state of a system, sacrificing
its coherency. We might for example create two inde-
pendent smaller-state systems rather than one large-state
system. This pattern applies a step-curve to the principle;
intra-system processing has low size and high synchrony,
inter-system processing has high size but low synchrony.
It is the principle behind meta-networks such as Polkadot,
Cosmos and the predominant vision of a scaled Ethereum
(all to be discussed in depth shortly).

The present work explores a middle-ground in the an-
tagonism, avoiding the persistent fragmentation of state-
space of the system as with existing approaches. We do
this by introducing a new model of computation which
pipelines a highly scalable element to a highly synchro-
nous element. Asynchrony is not avoided, but we do open
the possibility for a greater degree of granularity over how
it is traded against size. In particular fragmentation can
be made ephemeral rather than persistent, drawing upon
a coherent state and fragmenting it only for as long as it
takes to execute any given piece of processing on it.

Unlike with snark-based L2-blockchain techniques for
scaling, this model draws upon crypto-economic mecha-
nisms and inherits their low-cost and high-performance
profiles and averts a bias toward centralization.

1.4. Document Structure. We begin with a brief
overview of present scaling approaches in blockchain tech-
nology in section 2. In section 3 we define and clarify the
notation from which we will draw for our formalisms.

We follow with a broad overview of the protocol in sec-
tion 4 outlining the major areas including the Polka Vir-
tual Machine (pvm), the consensus protocols Safrole and
Grandpa, the common clock and build the foundations
of the formalism.

We then continue with the full protocol definition split
into two parts: firstly the correct on-chain state-transition
formula helpful for all nodes wishing to validator the chain
state, and secondly, in sections 13 and 15 the honest strat-
egy for the off-chain actions of any actors who wield a
validator key.

The main body ends with a discussion over the per-
formance characteristics of the protocol in section 17 and
finally conclude in section 18.

The appendix contains various additional material im-
portant for the protocol definition including the pvm in
appendices A & B, serialization and Merklization in ap-
pendices C & D and cryptography in appendices F, G &
H. We finish with an index of terms which includes the
values of all simple constant terms used in the work in
appendix I, and close with the bibliography.

2. Previous Work and Present Trends

In the years since the initial publication of the
Ethereum YP, the field of blockchain development has
grown immensely. Other than scalability, development
has been done around underlying consensus algorithms,
smart-contract languages and machines and overall state
environments. While interesting, these latter subjects are
mostly out scope of the present work since they generally
do not impact underlying scalability.

2.1. Polkadot. In order to deliver its service, Jam co-
opts much of the same game-theoretic and cryptographic
machinery as Polkadot known as Elves and described by
stewart2018efficient. However, major differences ex-
ist in the actual service offered with Jam, providing an
abstraction much closer to the actual computation model
generated by the validator nodes its economy incentivizes.

It was a major point of the original Polkadot pro-
posal, a scalable heterogeneous multichain, to deliver high-
performance through partition and distribution of the
workload over multiple host machines. In doing so it took
an explicit position that composability would be lowered.
Polkadot’s constituent components, parachains are, prac-
tically speaking, highly isolated in their nature. Though a
message passing system (xcmp) exists it is asynchronous,
coarse-grained and practically limited by its reliance on a
high-level slowly evolving interaction language xcm.

As such, the composability offered by Polkadot be-
tween its constituent chains is lower than that of
Ethereum-like smart-contract systems offering a single
and universal object environment and allowing for the
kind of agile and innovative integration which underpins
their success. Polkadot, as it stands, is a collection of

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 3

independent ecosystems with only limited opportunity
for collaboration, very similar in ergonomics to bridged
blockchains though with a categorically different security
profile. A technical proposal known as spree would uti-
lize Polkadot’s unique shared-security and improve com-
posability, though blockchains would still remain isolated.

Implementing and launching a blockchain is hard, time-
consuming and costly. By its original design, Polkadot
limits the clients able to utilize its service to those who
are both able to do this and raise a sufficient deposit to
win an auction for a long-term slot, one of around 50 at
the present time. While not permissioned per se, acces-
sibility is categorically and substantially lower than for
smart-contract systems similar to Ethereum.

Enabling as many innovators to participate and inter-
act, both with each other and each other’s user-base, ap-
pears to be an important component of success for a Web3
application platform. Accessibility is therefore crucial.

2.2. Ethereum. The Ethereum protocol was formally
defined in this paper’s spiritual predecessor, the Yel-
low Paper, by wood2014ethereum. This was de-
rived in large part from the initial concept paper by
buterin2013ethereum. In the decade since the YP
was published, the de facto Ethereum protocol and public
network instance have gone through a number of evolu-
tions, primarily structured around introducing flexibility
via the transaction format and the instruction set and
“precompiles” (niche, sophisticated bonus instructions) of
its scripting core, the Ethereum virtual machine (evm).

Almost one million crypto-economic actors take part
in the validation for Ethereum.2 Block extension is done
through a randomized leader-rotation method where the
physical address of the leader is public in advance of
their block production.3 Ethereum uses Casper-FFG in-
troduced by buterin2019casper to determine finality,
which with the large validator base finalizes the chain ex-
tension around every 13 minutes.

Ethereum’s direct computational performance remains
broadly similar to that with which it launched in 2015,
with a notable exception that an additional service now
allows 1mb of commitment data to be hosted per block
(all nodes to store it for a limited period). The data can-
not be directly utilized by the main state-transition func-
tion, but special functions provide proof that the data
(or some subsection thereof) is available. According to
ethereum2024danksharding, the present design direc-
tion is to improve on this over the coming years by split-
ting responsibility for its storage amongst the validator
base in a protocol known as Dank-sharding.

According to ethereum2024sigital, the scaling strat-
egy of Ethereum would be to couple this data availability
with a private market of roll-ups, sideband computation
facilities of various design, with zk-snark-based roll-ups
being a stated preference. Each vendor’s roll-up design,
execution and operation comes with its own implications.

One might reasonably assume that a diversified market-
based approach for scaling via multivendor roll-ups will al-
low well-designed solutions to thrive. However, there are
potential issues facing the strategy. A research report by
sharma2024ethereums on the level of decentralization
in the various roll-ups found a broad pattern of central-
ization, but notes that work is underway to attempt to
mitigate this. It remains to be seen how decentralized
they can yet be made.

Heterogeneous communication properties (such as
datagram latency and semantic range), security properties
(such as the costs for reversion, corruption, stalling and
censorship) and economic properties (the cost of accept-
ing and processing some incoming message or transaction)
may differ, potentially quite dramatically, between major
areas of some grand patchwork of roll-ups by various com-
peting vendors. While the overall Ethereum network may
eventually provide some or even most of the underlying
machinery needed to do the sideband computation it is
far from clear that there would be a “grand consolidation”
of the various properties should such a thing happen. We
have not found any good discussion of the negative rami-
fications of such a fragmented approach.4

2.2.1. Snark Roll-ups. While the protocol’s foundation
makes no great presuppositions on the nature of roll-ups,
Ethereum’s strategy for sideband computation does cen-
tre around snark-based rollups and as such the protocol
is being evolved into a design that makes sense for this.
Snarks are the product of an area of exotic cryptography
which allow proofs to be constructed to demonstrate to a
neutral observer that the purported result of performing
some predefined computation is correct. The complexity
of the verification of these proofs tends to be sub-linear in
their size of computation to be proven and will not give
away any of the internals of said computation, nor any
dependent witness data on which it may rely.

Zk-snarks come with constraints. There is a trade-off
between the proof’s size, verification complexity and the
computational complexity of generating it. Non-trivial
computation, and especially the sort of general-purpose
computation laden with binary manipulation which makes
smart-contracts so appealing, is hard to fit into the model
of snarks.

To give a practical example, risc-zero (as assessed by
bogli2024assessing) is a leading project and provides a
platform for producing snarks of computation done by
a risc-v virtual machine, an open-source and succinct
risc machine architecture well-supported by tooling. A
recent benchmarking report by koute2024risc0 showed
that compared to risc-zero’s own benchmark, proof gen-
eration alone takes over 61,000 times as long as simply re-
compiling and executing even when executing on 32 times
as many cores, using 20,000 times as much ram and an
additional state-of-the-art gpu. According to hardware

2Practical matters do limit the level of real decentralization. Validator software expressly provides functionality to allow a single instance
to be configured with multiple key sets, systematically facilitating a much lower level of actual decentralization than the apparent number
of actors, both in terms of individual operators and hardware. Using data collated by hildobby2024eth2 on Ethereum 2, one can see one
major node operator, Lido, has steadily accounted for almost one-third of the almost one million crypto-economic participants.

3Ethereum’s developers hope to change this to something more secure, but no timeline is fixed.
4Some initial thoughts on the matter resulted in a proposal by sadana2024bringing to utilize Polkadot technology as a means of

helping create a modicum of compatibility between roll-up ecosystems!
5In all likelihood actually substantially more as this was using low-tier “spare” hardware in consumer units, and our recompiler was

unoptimized.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 4

rental agents https://cloud-gpus.com/, the cost multi-
plier of proving using risc-zero is 66,000,000x of the cost5

to execute using our risc-v recompiler.
Many cryptographic primitives become too expensive

to be practical to use and specialized algorithms and struc-
tures must be substituted. Often times they are otherwise
suboptimal. In expectation of the use of snarks (such
as plonk as proposed by cryptoeprint:2019/953), the
prevailing design of the Ethereum project’s Dank-sharding
availability system uses a form of erasure coding centered
around polynomial commitments over a large prime field
in order to allow snarks to get acceptably performant
access to subsections of data. Compared to alternatives,
such as a binary field and Merklization in the present work,
it leads to a load on the validator nodes orders of magni-
tude higher in terms of cpu usage.

In addition to their basic cost, snarks present no great
escape from decentralization and the need for redundancy,
leading to further cost multiples. While the need for some
benefits of staked decentralization is averted through their
verifiable nature, the need to incentivize multiple parties
to do much the same work is a requirement to ensure that
a single party not form a monopoly (or several not form
a cartel). Proving an incorrect state-transition should be
impossible, however service integrity may be compromised
in other ways; a temporary suspension of proof-generation,
even if only for minutes, could amount to major economic
ramifications for real-time financial applications.

Real-world examples exist of the pit of centralization
giving rise to monopolies. One would be the aforemen-
tioned snark-based exchange framework; while notionally
serving decentralized exchanges, it is in fact centralized
with Starkware itself wielding a monopoly over enacting
trades through the generation and submission of proofs,
leading to a single point of failure—should Starkware’s ser-
vice become compromised, then the liveness of the system
would suffer.

It has yet to be demonstrated that snark-based strate-
gies for eliminating the trust from computation will ever
be able to compete on a cost-basis with a multi-party
crypto-economic platform. All as-yet proposed snark-
based solutions are heavily reliant on crypto-economic sys-
tems to frame them and work around their issues. Data
availability and sequencing are two areas well understood
as requiring a crypto-economic solution.

We would note that snark technology is improving and
the cryptographers and engineers behind them do expect
improvements in the coming years. In a recent article
by thaler2023technical we see some credible specula-
tion that with some recent advancements in cryptographic
techniques, slowdowns for proof generation could be as
little as 50,000x from regular native execution and much
of this could be parallelized. This is substantially bet-
ter than the present situation, but still several orders of
magnitude greater than would be required to compete on
a cost-basis with established crypto-economic techniques
such as elves.

2.3. Fragmented Meta-Networks. Directions for
general-purpose computation scalability taken by other
projects broadly centre around one of two approaches;
either what might be termed a fragmentation approach

or alternatively a centralization approach. We argue that
neither approach offers a compelling solution.

The fragmentation approach is heralded by projects
such as Cosmos (proposed by kwon2019cosmos) and
Avalanche (by tanana2019avalanche). It involves a sys-
tem fragmented by networks of a homogenous consensus
mechanic, yet staffed by separately motivated sets of val-
idators. This is in contrast to Polkadot’s single valida-
tor set and Ethereum’s declared strategy of heterogeneous
roll-ups secured partially by the same validator set operat-
ing under a coherent incentive framework. The homogene-
ity of said fragmentation approach allows for reasonably
consistent messaging mechanics, helping to present a fairly
unified interface to the multitude of connected networks.

However, the apparent consistency is superficial. The
networks are trustless only by assuming correct operation
of their validators, who operate under a crypto-economic
security framework ultimately conjured and enforced by
economic incentives and punishments. To do twice as
much work with the same levels of security and no special
coordination between validator sets, then such systems es-
sentially prescribe forming a new network with the same
overall levels of incentivization.

Several problems arise. Firstly, there is a simi-
lar downside as with Polkadot’s isolated parachains and
Ethereum’s isolated roll-up chains: a lack of coherency
due to a persistently sharded state preventing synchro-
nous composability.

More problematically, the scaling-by-fragmentation
approach, proposed specifically by Cosmos, provides
no homogenous security—and therefore trustlessness—
guarantees. Validator sets between networks must be
assumed to be independently selected and incentivized
with no relationship, causal or probabilistic, between the
Byzantine actions of a party on one network and potential
for appropriate repercussions on another. Essentially, this
means that should validators conspire to corrupt or revert
the state of one network, the effects may be felt across
other networks of the ecosystem.

That this is an issue is broadly accepted, and projects
propose for it to be addressed in one of two ways. Firstly,
to fix the expected cost-of-attack (and thus level of se-
curity) across networks by drawing from the same val-
idator set. The massively redundant way of doing this,
as proposed by cosmos2024interchain under the name
replicated security, would be to require each validator
to validate on all networks and for the same incentives
and punishments. This is economically inefficient in the
cost of security provision as each network would need to
independently provide the same level of incentives and
punishment-requirements as the most secure with which
it wanted to interoperate. This is to ensure the economic
proposition remain unchanged for validators and the se-
curity proposition remained equivalent for all networks.
At the present time, replicated security is not a readily
available permissionless service. We might speculate that
these punishing economics have something to do with it.

The more efficient approach, proposed by the Om-
niLedger team, cryptoeprint:2017/406, would be to
make the validators non-redundant, partitioning them be-
tween different networks and periodically, securely and
randomly repartitioning them. A reduction in the cost

https://cloud-gpus.com/

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 5

to attack over having them all validate on a single net-
work is implied since there is a chance of having a single
network accidentally have a compromising number of ma-
licious validators even with less than this proportion over-
all. This aside it presents an effective means of scaling
under a basis of weak-coherency.

Alternatively, as in Elves by stewart2018efficient,
we may utilize non-redundant partitioning, combine this
with a proposal-and-auditing game which validators play
to weed out and punish invalid computations, and then re-
quire that the finality of one network be contingent on all
causally-entangled networks. This is the most secure and
economically efficient solution of the three, since there is
a mechanism for being highly confident that invalid tran-
sitions will be recognized and corrected before their effect
is finalized across the ecosystem of networks. However, it
requires substantially more sophisticated logic and their
causal-entanglement implies some upper limit on the num-
ber of networks which may be added.

2.4. High-Performance Fully Synchronous Net-
works. Another trend in the recent years of blockchain
development has been to make “tactical” optimizations
over data throughput by limiting the validator set size or
diversity, focusing on software optimizations, requiring a
higher degree of coherency between validators, onerous re-
quirements on the hardware which validators must have,
or limiting data availability.

The Solana blockchain is underpinned by technology in-
troduced by yakovenko2018solana and boasts theoreti-
cal figures of over 700,000 transactions per second, though
according to ng2024is the network is only seen process-
ing a small fraction of this. The underlying throughput
is still substantially more than most blockchain networks
and is owed to various engineering optimizations in favor
of maximizing synchronous performance. The result is a
highly-coherent smart-contract environment with an api
not unlike that of YP Ethereum (albeit using a different
underlying VM), but with a near-instant time to inclusion
and finality which is taken to be immediate upon inclu-
sion.

Two issues arise with such an approach: firstly, defining
the protocol as the outcome of a heavily optimized code-
base creates structural centralization and can undermine
resilience. jha2024solana writes “since January 2022, 11
significant outages gave rise to 15 days in which major
or partial outages were experienced”. This is an outlier
within the major blockchains as the vast majority of ma-
jor chains have no downtime. There are various causes to
this downtime, but they are generally due to bugs found
in various subsystems.

Ethereum, at least until recently, provided the most
contrasting alternative with its well-reviewed specifica-
tion, clear research over its crypto-economic foundations
and multiple clean-room implementations. It is per-
haps no surprise that the network very notably contin-
ued largely unabated when a flaw in its most deployed
implementation was found and maliciously exploited, as
described by hertig2016so.

The second issue is concerning ultimate scalability of
the protocol when it provides no means of distributing
workload beyond the hardware of a single machine.

In major usage, both historical transaction data and
state would grow impractically. Solana illustrates how
much of a problem this can be. Unlike classical
blockchains, the Solana protocol offers no solution for the
archival and subsequent review of historical data, crucial
if the present state is to be proven correct from first prin-
ciple by a third party. There is little information on how
Solana manages this in the literature, but according to
solana2023solana, nodes simply place the data onto a
centralized database hosted by Google.6

Solana validators are encouraged to install large
amounts of ram to help hold its large state in mem-
ory (512 gb is the current recommendation according to
solana2024solana). Without a divide-and-conquer ap-
proach, Solana shows that the level of hardware which
validators can reasonably be expected to provide dictates
the upper limit on the performance of a totally synchro-
nous, coherent execution model. Hardware requirements
represent barriers to entry for the validator set and cannot
grow without sacrificing decentralization and, ultimately,
transparency.

3. Notational Conventions

Much as in the Ethereum Yellow Paper, a number of
notational conventions are used throughout the present
work. We define them here for clarity. The Ethereum
Yellow Paper itself may be referred to henceforth as the
YP.

3.1. Typography. We use a number of different type-
faces to denote different kinds of terms. Where a term is
used to refer to a value only relevant within some localized
section of the document, we use a lower-case roman letter
e.g. x, y (typically used for an item of a set or sequence)
or e.g. i, j (typically used for numerical indices). Where
we refer to a Boolean term or a function in a local context,
we tend to use a capitalized roman alphabet letter such as
A, F . If particular emphasis is needed on the fact a term
is sophisticated or multidimensional, then we may use a
bold typeface, especially in the case of sequences and sets.

For items which retain their definition throughout the
present work, we use other typographic conventions. Sets
are usually referred to with a blackboard typeface, e.g. N
refers to all natural numbers including zero. Sets which
may be parameterized may be subscripted or be followed
by parenthesized arguments. Imported functions, used by
the present work but not specifically introduced by it, are
written in calligraphic typeface, e.g. H the Blake2 cryp-
tographic hashing function. For other non-context depen-
dent functions introduced in the present work, we use up-
per case Greek letters, e.g. Υ denotes the state transition
function.

Values which are not fixed but nonetheless hold some
consistent meaning throughout the present work are de-
noted with lower case Greek letters such as σ, the state
identifier. These may be placed in bold typeface to denote
that they refer to an abnormally complex value.

6Earlier node versions utilized Arweave network, a decentralized data store, but this was found to be unreliable for the data throughput
which Solana required.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 6

3.2. Functions and Operators. We define the precedes
relation to indicate that one term is defined in terms of
another. E.g. y ≺ x indicates that y may be defined purely
in terms of x:

y ≺ x⇐⇒ ∃f ∶ y = f(x)(1)

The substitute-if-nothing function U is equivalent to
the first argument which is not ∅, or ∅ if no such argu-
ment exists:

U(a0, . . .) ≡ ax ∶ (ax ≠ ∅ ∨ x = n),
x−1
⋀
i=0

ai = ∅(2)

Thus, e.g. U(∅,1,∅,2) = 1 and U(∅,∅) = ∅.

3.3. Sets. We denote the cardinality of some set s, the
number of its elements, as the usual ∣s∣. We denote set-
disjointness with the relation ⫰. Formally:

A ∩B = ∅⇐⇒ A ⫰ B

We commonly use ∅ to indicate that some term is
validly left without a specific value. Its cardinality is
defined as zero. We define the operation ? such that
A? ≡ A ∪ {∅} indicating the same set but with the ad-
dition of the ∅ element.

The term ∇ is utilized to indicate the unexpected fail-
ure of an operation or that a value is invalid or unexpected.
(We try to avoid the use of the more conventional � here
to avoid confusion with Boolean false, which may be in-
terpreted as some successful result in some contexts.)

3.4. Numbers. N denotes the set of naturals including
zero whereas Nn denotes the set of naturals less than n.
Formally, N = {0,1, . . . } and Nn = {x ∣ x ∈ N, x < n}.

Z denotes the set of integers. We denote Za...b to be
the set of integers within the interval [a, b). Formally,
Za...b = {x ∣ x ∈ Z, a ≤ x < b}. E.g. Z2...5 = {2,3,4}. We
denote the offset/length form of this set as Za⋅⋅⋅+b, a short
form of Za...a+b.

It can sometimes be useful to represent lengths of se-
quences and yet limit their size, especially when dealing
with sequences of octets which must be stored practically.
Typically, these lengths can be defined as the set N232 .
To improve clarity, we denote NL as the set of lengths of
octet sequences and is equivalent to N232 .

We denote the % operator as the modulo operator,
e.g. 5 % 3 = 2. Furthermore, we may occasionally express
a division result as a quotient and remainder with the
separator R , e.g. 5 ÷ 3 = 1 R 3.

3.5. Dictionaries. A dictionary is a possibly partial
mapping from some domain into some co-domain in much
the same manner as a regular function. Unlike functions
however, with dictionaries the total set of pairings are nec-
essarily enumerable, and we represent them in some data
structure as the set of all (key ↦ value) pairs. (In such
data-defined mappings, it is common to name the values
within the range a key and the values within the domain
a value, hence the naming.)

Thus, we define the formalism D⟨K → V⟩ to denote a
dictionary which maps from the domain K to the range
V. We define a dictionary as a member of the set of all
dictionaries D and a set of pairs p = (k ↦ v):

D ⊂ {{(k ↦ v)}}(3)

A dictionary’s members must associate at most one
unique value for any key k:

∀d ∈ D ∶ ∀(k ↦ v) ∈ d ∶ ∃!v′ ∶ (k ↦ v′) ∈ d(4)

This assertion allows us to unambiguously define the
subscript and subtraction operator for a dictionary d:

∀d ∈ D ∶ d[k] ≡
⎧⎪⎪⎨⎪⎪⎩

v if ∃k ∶ (k ↦ v) ∈ d
∅ otherwise

(5)

∀d ∈ D, s ∶ a ∖ s ≡ {(k ↦ v) ∶ (k ↦ v) ∈ d, k /∈ s}(6)

Note that when using a subscript, it is an implicit as-
sertion that the key exists in the dictionary. Should the
key not exist, the result is undefined and any block which
relies on it must be considered invalid.

It is typically useful to limit the sets from which the
keys and values may be drawn. Formally, we define a
typed dictionary D⟨K → V ⟩ as a set of pairs p of the form
(k ↦ v):

D⟨K → V ⟩ ⊂ D(7)
D⟨K → V ⟩ ≡ {{(k ↦ v) ∣ k ∈K ∧ v ∈ V }}(8)

To denote the active domain (i.e. set of keys) of a dic-
tionary d ∈ D⟨K → V ⟩, we use K(d) ⊂K and for the range
(i.e. set of values), V(d) ⊂ V . Formally:

K(d ∈ D) ≡ { k ∣ ∃v ∶ (k ↦ v) ∈ d }(9)
V(d ∈ D) ≡ { v ∣ ∃k ∶ (k ↦ v) ∈ d }(10)

Note that since the domain of V is a set, should differ-
ent keys with equal values appear in the dictionary, the
set will only contain one such value.

3.6. Tuples. Tuples are groups of values where each item
typically belongs to a different set. They are denoted with
parentheses, e.g. the tuple t of the integers 3 and 5 is de-
noted t = (3,5), and it exists in the set of integer pairs
sometimes denoted N×N, but denoted in the present work
as (N,N).

We have frequent need to refer to a specific item within
a tuple value and as such find it convenient to declare a
name for each item. E.g. we may denote a tuple with two
named integer components a and b as T =⎧⎩a ∈ N, b ∈ N⎫⎭.
We would denote an item t ∈ T through subscripting its
name, thus for some t =⎧⎩a ▸

▸ 3, b ▸
▸ 5⎫⎭, ta = 3 and tb = 5.

3.7. Sequences. A sequence is a series of elements with
particular ordering not dependent on their values. The set
of sequences of elements all of which are drawn from some
set T is denoted ⟦T ⟧, and it defines a partial mapping
N → T . The set of sequences containing exactly n ele-
ments each a member of the set T may be denoted ⟦T ⟧n
and accordingly defines a complete mapping Nn → T . Sim-
ilarly, sets of sequences of at most n elements and at least
n elements may be denoted ⟦T ⟧∶n and ⟦T ⟧n∶ respectively.

Sequences are subscriptable, thus a specific item at
index i within a sequence s may be denoted s[i], or
where unambiguous, si. A range may be denoted us-
ing an ellipsis for example: [0,1,2,3]...2 == [0,1] and
[0,1,2,3]1⋅⋅⋅+2 == [1,2]. The length of such a sequence
may be denoted ∣s∣.

We denote modulo subscription as s[i]↺ ≡ s[i % ∣s∣].
We denote the final element x of a sequence s = [..., x]
through the function last(s) ≡ x.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 7

3.7.1. Construction. We may wish to define a sequence
in terms of incremental subscripts of other values:
[x0,x1, . . .]n denotes a sequence of n values beginning
x0 continuing up to xn−1. Furthermore, we may also
wish to define a sequence as elements each of which
are a function of their index i; in this case we denote
[f(i) ∣ i <− Nn] ≡ [f(0), f(1), . . . , f(n − 1)]. Thus, when
the ordering of elements matters we use <− rather than
the unordered notation ∈. The latter may also be written
in short form [f(i <− Nn)]. This applies to any set which
has an unambiguous ordering, particularly sequences, thus
[i2 ∣ i <− [1,2,3]] = [1,4,9]. Multiple sequences may be
combined, thus [i ⋅ j ∣ i <− [1,2,3], j <− [2,3,4]] = [2,6,12].

Sequences may be constructed from sets or other se-
quences whose order should be ignored through sequence
ordering notation [ik ^̂ i ∈X], which is defined to result
in the set or sequence of its argument except that all ele-
ments i are placed in ascending order of the corresponding
value ik.

The key component may be elided in which case it is as-
sumed to be ordered by the elements directly; i.e. [i ∈X] ≡
[i ^̂ i ∈X]. [ik __ i ∈X] does the same, but excludes any
duplicate values of i. E.g. assuming s = [1,3,2,3], then
[i__ i ∈ s] = [1,2,3] and [−i ^̂ i ∈ s] = [3,3,2,1].

Sets may be constructed from sequences with the reg-
ular set construction syntax, e.g. assuming s = [1,2,3,1],
then {a ∣ a ∈ s} would be equivalent to {1,2,3}.

Sequences of values which themselves have a defined
ordering have an implied ordering akin to a regular dic-
tionary, thus [1,2,3] < [1,2,4] and [1,2,3] < [1,2,3,1].

3.7.2. Editing. We define the sequence concatenation op-
erator ⌢ such that [x0,x1, . . . ,y0,y1, . . .] ≡ x ⌢ y. Futher,
we denote element-concatenation as x i ≡ x ⌢ [i]. We
denote the sequence made up of the first n elements of
sequence s to be Ð→s n ≡ [s0, s1, . . . , sn−1], and only the final
elements as ←Ðs n.

We denote sequence subtraction with a slight modifica-
tion of the set subtraction operator; specifically, some se-
quence s excepting the left-most element equal to v would
be denoted sm {v}.

3.7.3. Boolean values. Bs denotes the set of Boolean
strings of length s, thus Bs = [{�,⊺}]s. When dealing
with Boolean values we may assume an implicit equiva-
lence mapping to a bit whereby ⊺ = 1 and � = 0, thus
B◻ = [N2]◻. We use the function bits(Y) ∈ B to de-
note the sequence of bits, ordered with the least signif-
icant first, which represent the octet sequence Y, thus
bits([5,0]) = [1,0,1,0,0, . . .].

3.7.4. Octets and Blobs. Y denotes the set of octet strings
(“blobs”) of arbitrary length. As might be expected, Yx

denotes the set of such sequences of length x. Y$ de-
notes the subset of Y which are ASCII-encoded strings.
Note that while an octet has an implicit and obvious bi-
jective relationship with natural numbers less than 256,
and we may implicitly coerce between octet form and in-
teger form, we do not treat them as exactly equivalent
entities. In particular for the purpose of serialization an
octet is always serialized in the sequence containing only
itself, whereas an integer may be serialized as a sequence
of potentially several octets, depending on its magnitude.

3.7.5. Shuffling. We define the sequence-shuffle function
F , originally introduced by fisheryates1938statistical,
with an efficient in-place algorithm described by
wikipedia2024fisheryates. This accepts a sequence and
some entropy and returns a sequence of the same length
with the same elements but in an order determined by the
entropy. The entropy may be provided as either an indef-
inite sequence of integers or a hash. For a full definition
see appendix E.

3.8. Cryptography.

3.8.1. Hashing. H denotes the set of 256-bit values typi-
cally expected to be arrived at through a cryptographic
function, equivalent to Y32, with H0 being equal to
[0]32. We assume a function H(m ∈ Y) ∈ H denoting
the Blake2b 256-bit hash introduced by rfc7693 and a
function HK(m ∈ Y) ∈ H denoting the Keccak 256-bit
hash as proposed by bertoni2013keccak and utilized by
wood2014ethereum.

We may sometimes wish to take only the first x octets
of a hash, in which case we denote Hx(m) ∈ Yx to be the
first x octets of H(m). The inputs of a hash function are
generally assumed to be serialized with our codec E(x) ∈ Y,
however for the purposes of clarity or unambiguity we may
also explicitly denote the serialization. Similarly, we may
wish to interpret a sequence of octets as some other kind
of value with the assumed decoder function E−1(x ∈ Y). In
both cases, we may subscript the transformation function
with the number of octets we expect the octet sequence
term to have. Thus, r = E4(x ∈ N) would assert x ∈ N232

and r ∈ Y4, whereas s = E−18 (y) would assert y ∈ Y8 and
s ∈ N264 .

3.8.2. Signing Schemes. Ek⟨m⟩ ⊂ Y64 is the set of valid
Ed25519 signatures, defined by rfc8032, made through
knowledge of a secret key whose public key counterpart is
k ∈ Y32 and whose message is m. To aid readability, we
denote the set of valid public keys k ∈ HE .

We use YBLS ⊂ Y144 to denote the set of public keys for
the bls signature scheme, described by jofc-2004-14130,
on curve bls12-381 defined by bls12-381.

We denote the set of valid Bandersnatch public keys as
HB , defined in appendix G. Fm∈Y

k∈HB
⟨x ∈ Y⟩ ⊂ Y96 is the set

of valid singly-contextualized signatures of utilizing the se-
cret counterpart to the public key k, some context x and
message m.

F̄m∈Y
r∈YR⟨x ∈ Y⟩ ⊂ Y388, meanwhile, is the set of valid Ban-

dersnatch Ringvrf deterministic singly-contextualized
proofs of knowledge of a secret within some set of se-
crets identified by some root in the set of valid roots
YR ∈ Y196608. We denote R(s ∈ [HB]) ∈ YR to be the root
specific to the set of public key counterparts s. A root im-
plies a specific set of Bandersnatch key pairs, knowledge
of one of the secrets would imply being capable of making
a unique, valid—and anonymous—proof of knowledge of
a unique secret within the set.

Both the Bandersnatch signature and Ringvrf proof
strictly imply that a member utilized their secret key in
combination with both the context x and the message m;
the difference is that the member is identified in the former
and is anonymous in the latter. Furthermore, both define
a vrf output, a high entropy hash influenced by x but not
by m, formally denoted Y(F̄m

r ⟨x⟩) ⊂ H and Y(Fm
k ⟨x⟩) ⊂ H.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 8

We define the function S as the signature function, such
that Sk(m) ∈ Fm

k ⟨[]⟩ ∪ Ek⟨m⟩. We assert that the ability
to compute a result for this function relies on knowledge
of a secret key.

4. Overview

As in the Yellow Paper, we begin our formalisms by
recalling that a blockchain may be defined as a pairing
of some initial state together with a block-level state-
transition function. The latter defines the posterior state
given a pairing of some prior state and a block of data
applied to it. Formally, we say:

σ′ ≡ Υ(σ,B)(11)

Where σ is the prior state, σ′ is the posterior state, B is
some valid block and Υ is our block-level state-transition
function.

Broadly speaking, Jam (and indeed blockchains in gen-
eral) may be defined simply by specifying Υ and some gen-
esis state σ0.7 We also make several additional assump-
tions of agreed knowledge: a universally known clock, and
the practical means of sharing data with other systems
operating under the same consensus rules. The latter two
were both assumptions silently made in the YP.

4.1. The Block. To aid comprehension and definition of
our protocol, we partition as many of our terms as possible
into their functional components. We begin with the block
B which may be restated as the header H and some input
data external to the system and thus said to be extrinsic,
E:

B ≡ (H,E)(12)
E ≡ (ET ,EJ ,EP ,EA,EG)(13)

The header is a collection of metadata primarily con-
cerned with cryptographic references to the blockchain an-
cestors and the operands and result of the present tran-
sition. As an immutable known a priori, it is assumed
to be available throughout the functional components of
block transition. The extrinsic data is split into its several
portions:

tickets: Tickets, used for the mechanism which
manages the selection of validators for the per-
missioning of block authoring. This component is
denoted ET .

judgements: Votes, by validators, on dispute(s)
arising between them presently taking place. This
is denoted EJ .

preimages: Static data which is presently being re-
quested to be available for workloads to be able
to fetch on demand. This is denoted EP .

availability: Assurances by each validator concern-
ing which of the input data of workloads they have
correctly received and are storing locally. This is
denoted EA.

reports: Reports of newly completed workloads
whose accuracy is guaranteed by specific valida-
tors. This is denoted EG.

4.2. The State. Our state may be logically partitioned
into several largely independent segments which can both
help avoid visual clutter within our protocol description
and provide formality over elements of computation which
may be simultaneously calculated (i.e. parallelized). We
therefore pronounce an equivalence between σ (some com-
plete state) and a tuple of partitioned segments of that
state:

σ ≡ (α,β, γ, δ, η, ι, κ, λ, ρ, τ, φ,χ,ψ)(14)

In summary, δ is the portion of state dealing with ser-
vices, analogous in Jam to the Yellow Paper’s (smart con-
tract) accounts, the only state of the YP’s Ethereum. The
identities of services which hold some privileged status are
tracked in χ.

Validators, who are the set of economic actors uniquely
privileged to help build and maintain the Jam chain, are
identified within κ, archived in λ and enqueued from ι. All
other state concerning the determination of these keys is
held within γ. Note this is a departure from the YP proof-
of-work definitions which were mostly stateless, and this
set was not enumerated but rather limited to those with
sufficient compute power to find a partial hash-collision in
the sha2-256 cryptographic hash function. An on-chain
entropy pool is retained in η.

Our state also tracks two aspects of each core: α, the
authorization requirement which work done on that core
must satisfy at the time of being reported on-chain, to-
gether with the queue which fills this, φ; and ρ, each of the
cores’ currently assigned report, the availability of whose
work-package must yet be assured by a super-majority of
validators.

Finally, details of the most recent blocks and time are
tracked in β and τ respectively and ongoing disputes are
tracked in ψ.

4.2.1. State Transition Dependency Graph. Much as in
the YP, we specify Υ as the implication of formulating
all items of posterior state in terms of the prior state and
block. To aid the architecting of implementations which
parallelize this computation, we minimize the depth of
the dependency graph where possible. The overall depen-
dency graph is specified here:

τ ′ ≺H(15)

β† ≺ (H, β)(16)

β′ ≺ (H,EG, β
†,C)(17)

γ′ ≺ (H, τ,ET , γ, ι, η
′, κ′)(18)

η′ ≺ (H, τ, η)(19)
κ′ ≺ (H, τ, κ, γ,ψ′)(20)
λ′ ≺ (H, τ, λ, κ)(21)
ψ′ ≺ (EJ , ψ)(22)

δ† ≺ (EP , δ, τ
′)(23)

ρ† ≺ (EJ , ρ)(24)

ρ‡ ≺ (EA, ρ
†)(25)

ρ′ ≺ (EG, ρ
‡, κ, τ ′)(26)

7Practically speaking, blockchains sometimes make assumptions of some fraction of participants whose behavior is simply honest, and
not provably incorrect nor otherwise economically disincentivized. While the assumption may be reasonable, it must nevertheless be stated
apart from the rules of state-transition.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 9

δ′

χ′

ι′

φ′

C

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≺ (EA, ρ
′, δ†, χ, ι, φ)(27)

α′ ≺ (EG, φ
′, α)(28)

The only synchronous entangements are visible
through the intermediate components superscripted with
a dagger and defined in equations 16, 23 and 25. The lat-
ter two mark a merge and join in the dependency graph
and, concretely, imply that the preimage lookup extrinsic
must be folded into state before the availability extrinsic
may be fully processed and accumulation of work happen.

4.3. Which History? A blockchain is a sequence of
blocks, each cryptographically referencing some prior
block by including a hash of its header, all the way back
to some first block which references the genesis header.
We already presume consensus over this genesis header
H0 and the state it represents already defined as σ0.

By defining a deterministic function for deriving a sin-
gle posterior state for any (valid) combination of prior
state and block, we are able to define a unique canonical
state for any given block. We generally call the block with
the most ancestors the head and its state the head state.

It is generally possible for two blocks to be valid and yet
reference the same prior block in what is known as a fork.
This implies the possibility of two different heads, each
with their own state. While we know of no way to strictly
preclude this possibility, for the system to be useful we
must nonetheless attempt to minimize it. We therefore
strive to ensure that:

(1) It be generally unlikely for two heads to form.
(2) When two heads do form they be quickly resolved

into a single head.
(3) It be possible to identify a block not much older

than the head which we can be extremely confi-
dent will form part of the blockchain’s history in
perpetuity. When a block becomes identified as
such we call it finalized and this property natu-
rally extends to all of its ancestor blocks.

These goals are achieved through a combination of
two consensus mechanisms: Safrole, which governs the
(not-necessarily forkless) extension of the blockchain; and
Grandpa, which governs the finalization of some extension
into canonical history. Thus, the former delivers point 1,
the latter delivers point 3 and both are important for de-
livering point 2. We describe these portions of the protocol
in detail in sections 6 and 15 respectively.

While Safrole limits forks to a large extent (through
cryptography, economics and common-time, below), there
may be times when we wish to intentionally fork since we
have come to know that a particular chain extension must
be reverted. In regular operation this should never hap-
pen, however we cannot discount the possibility of mali-
cious or malfunctioning nodes. We therefore define such
an extension as any which contains a block in which data
is reported which any other block’s state has tagged as
invalid (see section 10 on how this is done). We further

require that Grandpa not finalize any extension which con-
tains such a block. See section 15 for more information
here.

4.4. Time. We presume a pre-existing consensus over
time specifically for block production and import. While
this was not an assumption of Polkadot, pragmatic and
resilient solutions exist including the ntp protocol and
network. We utilize this assumption on only one way: we
require that blocks be considered temporarily invalid if
their timeslot is in the future. This is specified in detail
in section 6.

Formally, we define the time in terms of seconds passed
since the beginning of the Jam Common Era, 1200 UTC
on January 1, 2024.8 Midday CET is selected to ensure
that all significant timezones are on the same date at any
exact 24-hour multiple from the beginning of the common
era. Formally, this value is denoted T .

4.5. Best block. Given the recognition of a number of
valid blocks, it is necessary to determine which should be
treated as the “best” block, by which we mean the most
recent block we believe will ultimately be within of all fu-
ture Jam chains. The simplest and least risky means of
doing this would be to inspect the Grandpa finality mech-
anism which is able to provide a block for which there is a
very high degree of confidence it will remain an ancestor
to any future chain head.

However, in reducing the risk of the resulting block ul-
timately not being within the canonical chain, Grandpa
will typically return a block some small period older than
the most recently authored block. (Existing deployments
suggest around 1-2 blocks in the past under regular oper-
ation.) There are often circumstances when we may wish
to have less latency at the risk of the returned block not
ultimately forming a part of the future canonical chain.
E.g. we may be in a position of being able to author a
block, and we need to decide what its parent should be.
Alternatively, we may care to speculate about the most
recent state for the purpose of providing information to a
downstream application reliant on the state of Jam.

In these cases, we define the best block as the head of
the best chain, itself defined in section 15.

4.6. Economics. The present work describes a crypto-
economic system, i.e. one combining elements of both
cryptography and economics and game theory to deliver
a self-sovereign digital service. In order to codify and ma-
nipulate economic incentives we define a token which is
native to the system, which we will simply call tokens in
the present work.

A value of tokens is generally referred to as a balance,
and such a value is said to be a member of the set of bal-
ances, NB , which is exactly equivalent to the set of 64-bit
unsigned integers:

NB ≡ N264(29)

Though unimportant for the present work, we presume
that there be a standard named denomination for 109 to-
kens. This is different to both Ethereum (which uses a
denomination of 1018), Polkadot (which uses a denomina-
tion of 1010) and Polkadot’s experimental cousin Kusama
(which uses 1012).

81,704,110,400 seconds after the Unix Epoch.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 10

The fact that balances are represented as a 64-bit in-
teger implies that there may never be more than around
18×109 tokens (each divisible into portions of 10−9) within
Jam. We would expect that the total number of tokens
ever issued will be a substantially smaller amount than
this.

We further presume that a number of constant prices
stated in terms of tokens are known. However we leave
the specific values to be determined in following work:

BI : the additional minimum balance implied for a
single item within a mapping.

BL: the additional minimum balance implied for a
single octet of data within a mapping.

BS: the minimum balance implied for a service.

4.7. The Virtual Machine and Gas. In the present
work, we presume the definition of a Polka Virtual Ma-
chine (pvm). This virtual machine is based around
the risc-v instruction set architecture, specifically the
rv32ecm variant, and is the basis for introducing permis-
sionless logic into our state-transition function.

The pvm is comparable to the evm defined in the Yel-
low Paper, but somewhat simpler: the complex instruc-
tions for cryptographic operations are missing as are those
which deal with environmental interactions. Overall it is
far less opinionated since it alters a pre-existing general
purpose design, risc-v, and optimizes it for our needs.
This gives us excellent pre-existing tooling, since pvm re-
mains essentially compatible with risc-v, including sup-
port from the compiler toolkit llvm and languages such
as Rust and C++. Furthermore, the instruction set sim-
plicity which risc-v and pvm share, together with the
register size (32-bit), active number (13) and endianness
(little) make it especially well-suited for creating efficient
recompilers on to common hardware architectures.

The pvm is fully defined in appendix A, but for contex-
tualization we will briefly summarize the basic invocation
function Ψ which computes the resultant state of a pvm
instance initialized with some registers (⟦NR⟧13) and ram
(M) and has executed for up to some amount of gas (NG),
a number of approximately time-proportional computa-
tional steps:

(30) Ψ∶
⎧⎪⎪⎪⎪⎪⎪⎩

Y, NR, NG,

⟦NR⟧13, M

⎫⎪⎪⎪⎪⎪⎪⎭
→
⎧⎪⎪⎪⎪⎪⎪⎪⎩

{∎,☇,∞} ∪ { F

, h̵} ×NR,

NR, ZG, ⟦NR⟧13, M

⎫⎪⎪⎪⎪⎪⎪⎪⎭
We refer to the time-proportional computational steps

as gas (much like in the YP) and limit it to a 64-bit quan-
tity. We may use either NG or ZG to bound it, the first as
a prior argument since it is known to be positive, the latter
as a result where a negative value indicates an attempt to
execute beyond the gas limit. Within the context of the
pvm, ξ ∈ NG is typically used to denote gas.

(31) ZG ≡ Z−263 ∶263 , NG ≡ N264 , NR ≡ N232

It is left as a rather important implementation detail to
ensure that the amount of time taken while computing the
function Ψ(. . . , ξ, . . .) has a maximum computation time
approximately proportional to the value of ξ regardless of
other operands.

The pvm is a very simple risc register machine and
as such has 13 registers, each of which is a 32-bit integer,

denoted NR.9 Within the context of the pvm, ω ∈ ⟦NR⟧13
is typically used to denote the registers.

M ≡⎧⎩V ∈ Y232 , A ∈ ⟦{W,R,∅}⟧232⎫⎭(32)
The pvm assumes a simple pageable ram of 32-bit

addressable octets where each octet may be either im-
mutable, mutable or inaccessible. The ram definition M

includes two components: a value V and access A. If the
component is unspecified while being subscripted then the
value component may be assumed. Within the context of
the virtual machine, µ ∈ M is typically used to denote ram.

Vµ ≡ {i ∣ µA[i] ≠ ∅} V
∗
µ ≡ {i ∣ µA[i] =W}(33)

We define two sets of indices for the ram µ: Vµ is the
set of indices which may be read from; and V∗µ is the set
of indices which may be written to.

Invocation of the pvm has an exit-reason as the first
item in the resultant tuple. It is either:

● Regular program termination caused by an ex-
plicit halt instruction, ∎.

● Irregular program termination caused by some ex-
ceptional circumstance, ☇.

● Exhaustion of gas, ∞.
● A page fault (attempt to access some address in

ram which is not accessible), F. This includes the
address at fault.

● An attempt at progressing a host-call, h̵. This
allows for the progression and integration of a
context-dependent state-machine beyond the reg-
ular pvm.

The full definition follows in appendix A.

4.8. Epochs and Slots. Unlike the YP Ethereum with
its proof-of-work consensus system, Jam defines a proof-of-
authority consensus mechanism, with the authorized val-
idators presumed to be identified by a set of public keys
and decided by a staking mechanism residing within some
system hosted by Jam. The staking system is out of scope
for the present work; instead there is an api which may
be utilized to update these keys, and we presume that
whatever logic is needed for the staking system will be
introduced and utilize this api as needed.

The Safrole mechanism subdivides time following gen-
esis into fixed length epochs with each epoch divided into
E = 600 timeslots each of uniform length P = 6 seconds,
given an epoch period of E ⋅P = 3600 seconds or one hour.

This six-second slot period represents the minimum
time between Jam blocks, and through Safrole we aim
to strictly minimize forks arising both due to contention
within a slot (where two valid blocks may be produced
within the same six-second period) and due to contention
over multiple slots (where two valid blocks are produced
in different time slots but with the same parent).

Formally when identifying a timeslot index, we use a
32-bit integer indicating the number of six-second times-
lots from the Jam Common Era. For use in this context
we introduce the set NT :

NT ≡ N232(34)
This implies that the lifespan of the proposed protocol

takes us to mid-August of the year 2840, which with the
current course that humanity is on should be ample.

9This is three fewer than risc-v’s 16, however the amount that program code output by compilers uses is 13 since two are reserved for
operating system use and the third is fixed as zero

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 11

4.9. The Core Model and Services. Whereas in the
Ethereum Yellow Paper when defining the state machine
which is held in consensus amongst all network partici-
pants, we presume that all machines maintaining the full
network state and contributing to its enlargement—or, at
least, hoping to—evaluate all computation. This “every-
body does everything” approach might be called the on-
chain consensus model. It is unfortunately not scalable,
since the network can only process as much logic in con-
sensus that it could hope any individual node is capable
of doing itself within any given period of time.

4.9.1. In-core Consensus. In the present work, we achieve
scalability of the work done through introducing a sec-
ond model for such computation which we call the in-core
consensus model. In this model, and under normal cir-
cumstances, only a subset of the network is responsible
for actually executing any given computation and assur-
ing the availability of any input data it relies upon to
others. By doing this and assuming a certain amount of
computational parallelism within the validator nodes of
the network, we are able to scale the amount of computa-
tion done in consensus commensurate with the size of the
network, and not with the computational power of any
single machine. In the present work we expect the net-
work to be able to do upwards of 300 times the amount
of computation in-core as that which could be performed
by a single machine running the virtual machine at full
speed.

Since in-core consensus is not evaluated or verified by
all nodes on the network, we must find other ways to be-
come adequately confident that the results of the com-
putation are correct, and any data used in determining
this is available for a practical period of time. We do
this through a crypto-economic game of three stages called
guaranteeing, assuring, auditing and, potentially, judging.
Respectively, these attach a substantial economic cost to
the invalidity of some proposed computation; then a suffi-
cient degree of confidence that the inputs of the computa-
tion will be available for some period of time; and finally,
a sufficient degree of confidence that the validity of the
computation (and thus enforcement of the first guaran-
tee) will be checked by some party who we can expect to
be honest.

All execution done in-core must be reproducible by any
node synchronized to the portion of the chain which has
been finalized. Execution done in-core is therefore de-
signed to be as stateless as possible. The requirements for
doing it include only the refinement code of the service,
the code of the authorizer and any preimage lookups it
carried out during its execution.

When a work-report is presented on-chain, a specific
block known as the lookup-anchor is identified. Cor-
rect behavior requires that this must be in the finalized
chain and reasonably recent, both properties which may
be proven and thus are acceptable for use within a con-
sensus protocol.

We describe this pipeline in detail in the relevant sec-
tions later.

4.9.2. On Services and Accounts. In YP Ethereum, we
have two kinds of accounts: contract accounts (whose ac-
tions are defined deterministically based on the account’s
associated code and state) and simple accounts which act

as gateways for data to arrive into the world state and are
controlled by knowledge of some secret key. In Jam, all
accounts are service accounts. Like Ethereum’s contract
accounts, they have an associated balance, some code and
state. Since they are not controlled by a secret key, they
do not need a nonce.

The question then arises: how can external data be fed
into the world state of Jam? And, by extension, how does
overall payment happen if not by deducting the account
balances of those who sign transactions? The answer to
the first lies in the fact that our service definition actually
includes multiple code entry-points, one concerning refine-
ment and the other concerning accumulation. The former
acts as a sort of high-performance stateless processor, able
to accept arbitrary input data and distill it into some much
smaller amount of output data. The latter code is more
stateful, providing access to certain on-chain functionality
including the possibility of transferring balance and invok-
ing the execution of code in other services. Being stateful
this might be said to more closely correspond to the code
of an Ethereum contract account.

To understand how Jam breaks up its service code is
to understand Jam’s fundamental proposition of general-
ity and scalability. All data extrinsic to Jam is fed into
the refinement code of some service. This code is not
executed on-chain but rather is said to be executed in-
core. Thus, whereas the accumulator code is subject to
the same scalability constraints as Ethereum’s contract
accounts, refinement code is executed off-chain and sub-
ject to no such constraints, enabling Jam services to scale
dramatically both in the size of their inputs and in the
complexity of their computation.

While refinement and accumulation take place in con-
sensus environments of a different nature, both are exe-
cuted by the members of the same validator set. The Jam
protocol through its rewards and penalties ensures that
code executed in-core has a comparable level of crypto-
economic security to that executed on-chain, leaving the
primary difference between them one of scalability versus
synchroneity.

As for managing payment, Jam introduces a new ab-
straction mechanism based around Polkadot’s Agile Core-
time. Within the Ethereum transactive model, the mecha-
nism of account authorization is somewhat combined with
the mechanism of purchasing blockspace, both relying on
a cryptographic signature to identify a single “transactor”
account. In Jam, these are separated and there is no such
concept of a “transactor”.

In place of Ethereum’s gas model for purchasing and
measuring blockspace, Jam has the concept of coretime,
which is prepurchased and assigned to an authorization
agent. Coretime is analogous to gas insofar as it is the
underlying resource which is being consumed when utiliz-
ing Jam. Its procurement is out of scope in the present
work and is expected to be managed by a system parachain
operating within a parachains service itself blessed with a
number of cores for running such system services. The au-
thorization agent allows external actors to provide input
to a service without necessarily needing to identify them-
selves as with Ethereum’s transaction signatures. They
are discussed in detail in section 8.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 12

5. The Header

We must first define the header in terms of its com-
ponents. The header comprises a parent hash and prior
state root (Hp and Hr), an extrinsic hash Hx, a time-
slot index Ht, the epoch, winning-tickets and judgements
markers He, Hw and Hj , a Bandersnatch block author
key Kk and two Bandersnatch signatures; the entropy-
yielding vrf signature Hv and a block seal Hs. Headers
may be serialized to an octet sequence with and without
the latter seal component using E and EU respectively.
Formally:

(35) H ≡ (Hp,Hr,Hx,Ht,He,Hw,Hj ,Hk,Hv,Hs)

Blocks considered invalid by this rule may become valid
as T advances.

The blockchain is a sequence of blocks, each crypto-
graphically referencing some prior block by including a
hash derived from the parent’s header, all the way back to
some first block which references the genesis header. We
already presume consensus over this genesis header H0

and the state it represents defined as σ0.
Excepting the Genesis header, all block headers H have

an associated parent header, whose hash is Hp. We denote
the parent header H− = P (H):

(36) Hp ∈ H , Hp ≡H(P (H))

P is thus defined as being the mapping from one block
header to its parent block header. With P , we are able to
define the set of ancestor headers A:

h ∈A⇔ h =H ∨ (∃i ∈A ∶ h = P (i))(37)

We only require implementations to store headers of
ancestors which were authored in the previous L = 24 hours
of any block B they wish to validate.

The extrinsic hash is the hash of the block’s extrinsic
data. Given any block B = (H,E), then formally:

(38) Hx ∈ H , Hx ≡H(E(E))

A block may only be regarded as valid once the time-
slot index Ht is in the past. It is always strictly greater
than that of its parent. Formally:

(39) Ht ∈ NT , P (H)t <Ht ∧ Ht ⋅ P ≤ T

The parent state root Hr is the root of a Merkle trie
composed by the mapping of the prior state’s Merkle root,
which by definition is also the parent block’s posterior
state. This is a departure from both Polkadot and the Yel-
low Paper’s Ethereum, in both of which a block’s header
contains the posterior state’s Merkle root. We do this
to facilitate the pipelining of block computation and in
particular of Merklization.

(40) Hr ∈ H , Hr ≡MS(σ)

We assume the state-Merklization function MS is ca-
pable of transforming our state σ into a 32-octet commit-
ment. See appendix D for a full definition of these two
functions.

All blocks have an associated public key to identify the
author of the block. We identify this as an index into the
current validator set κ. We denote the Bandersnatch key
of the author as Ha though note that this is merely an
equivalence, and is not serialized as part of the header.

(41) Hk ∈ NV , Ha ≡ κ[Hk]

5.1. The Epoch and Winning Tickets Markers. If
not ∅, then the epoch marker specifies key and entropy
relevant to the following epoch in case the ticket contest
does not complete adequately (a very much unexpected
eventuality). Similarly, the winning-tickets marker, if not
∅, provides the series of 600 slot sealing “tickets” for the
next epoch (see the next section):

(42) He ∈⎧⎩H, ⟦HB⟧V⎫⎭? , Hw ∈ ⟦C⟧E?

The terms are fully defined in section 6.6.

6. Block Production and Chain Growth

As mentioned earlier, Jam is architected around a hy-
brid consensus mechanism, similar in nature to that of
Polkadot’s Babe/Grandpa hybrid. Jam’s block produc-
tion mechanism, termed Safrole after the novel Sassafras
production mechanism of which it is a simplified variant, is
a stateful system rather more complex than the Nakamoto
consensus described in the YP.

The chief purpose of a block production consensus
mechanism is to limit the rate at which new blocks may be
authored and, ideally, preclude the possibility of “forks”:
multiple blocks with equal numbers of ancestors.

To achieve this, Safrole limits the possible author of
any block within any given six-second timeslot to a sin-
gle key-holder from within a prespecified set of validators.
Furthermore, under normal operation, the identity of the
key-holder of any future timeslot will have a very high de-
gree of anonymity. As a side effect of its operation, we
can generate a high-quality pool of entropy which may be
used by other parts of the protocol and is accessible to
services running on it.

Because of its tightly scoped role, the core of Safrole’s
state, γ, is independent of the rest of the protocol. It in-
teracts with other portions of the protocol through ι and
κ, the prospective and active sets of validator keys re-
spectively; τ , the most recent block’s timeslot; and η, the
entropy accumulator.

The Safrole protocol generates, once per epoch, a se-
quence of E sealing keys, one for each potential block
within a whole epoch. Each block header includes its
timeslot index Ht (the number of six-second periods since
the Jam Common Era began) and a valid seal signature
Hs, signed by the sealing key corresponding to the times-
lot within the aforementioned sequence. Each sealing key
is in fact a pseudonym for some validator which was agreed
the privilege of authoring a block in the corresponding
timeslot.

In order to generate this sequence of sealing keys, and
in particular to do so without making public the corre-
spondence relation between them and the validator set, we
use a novel cryptographic structure known as a Ringvrf,
utilizing the Bandersnatch curve. Bandersnatch Ringvrf
allows for a proof to be provided which simultaneously
guarantees the author controlled a key within a set (in
our case validators), and secondly provides an output, an
unbiasable deterministic hash giving us a secure verifiable
random function (vrf) and as a means of determining
which validators are able to author in which slots.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 13

6.1. Timekeeping. Here, τ defines the most recent
block’s slot index, which we transition to the slot index
as defined in the block’s header:
(43) τ ∈ NT , τ ′ ≡Ht

We track the slot index in state as τ in order that we
are able to easily both identify a new epoch and deter-
mine the slot at which the prior block was authored. We
denote e as the prior’s epoch index and m as the prior’s
slot phase index within that epoch and e′ and m′ are the
corresponding values for the present block:

let e R m = τ
E
, e′ R m′ = τ

′

E
(44)

6.2. Safrole Basic State. We restate γ into a number
of components:

γ ≡⎧⎩γk, γz, γs, γa⎫⎭(45)
γz is the epoch’s root, a Bandersnatch ring root com-

posed with the one Bandersnatch key of each of the next
epoch’s validators, defined in γk (itself defined in the next
section).

γz ∈ YR(46)
Finally, γa is the ticket accumulator, a series of highest-

scoring ticket identifiers to be used for the next epoch. γs
is the current epoch’s slot-sealer series, which is either a
full complement of E tickets or, in the case of a fallback
mode, a series of E Bandersnatch keys:

γa ∈ ⟦C⟧∶E , γs ∈ ⟦C⟧E ∪ ⟦HB⟧E(47)
Here, C is used to denote the set of tickets, a combi-

nation of a verifiably random ticket identifier y and the
ticket’s entry-index r:

C ≡⎧⎩y ∈ H, r ∈ NN
⎫⎭(48)

As we state in section 6.4, Safrole requires that every
block header H contain a valid seal Hs, which is a Ban-
dersnatch signature for a public key at the appropriate
index m of the current epoch’s seal-key series, present in
state as γs.

6.3. Key Rotation. In addition to the active set of val-
idator keys κ and staging set ι, internal to the Safrole state
we retain a pending set γk. The active set is the set of keys
identifying the nodes which are currently privileged to au-
thor blocks and carry out the validation processes, whereas
the pending set γk, which is reset to ι at the beginning of
each epoch, is the set of keys which will be active in the
next epoch and which determine the Bandersnatch ring
root which authorizes tickets into the sealing-key contest
for the next epoch.

ι ∈ ⟦K⟧V , γk ∈ ⟦K⟧V , κ ∈ ⟦K⟧V , λ ∈ ⟦K⟧V(49)
We must introduce K, the set of validator key tuples.

This is a combination of cryptographic public keys for
Bandersnatch and Ed25519 cryptography, and a third
metadata key which is an opaque octet sequence, but uti-
lized to specify practical identifiers for the validator, not
least a hardware address.

The set of validator keys itself is equivalent to the set of
176-octet sequences. However, for clarity, we divide the
sequence into four easily denoted components. For any
validator key v, the Bandersnatch key is denoted vb, and
is equivalent to the first 32-octets; the Ed25519 key, ve, is

the second 32 octets; the BLS key denoted vBLS is equiv-
alent to the following 144 octets, and finally the metadata
vm is the last 128 octets. Formally:

K ≡ Y336(50)
∀v ∈ K ∶ vb ∈ HB ≡ v0⋅⋅⋅+32(51)
∀v ∈ K ∶ ve ∈ HE ≡ v32⋅⋅⋅+32(52)

∀v ∈ K ∶ vBLS ∈ YBLS ≡ v64⋅⋅⋅+144(53)
∀v ∈ K ∶ vm ∈ Y208 ≡ v208⋅⋅⋅+128(54)

With a new epoch under regular conditions, validator
keys get rotated and the epoch’s Bandersnatch key root is
updated into γ′z:

(55)

(γ′k, κ′, λ′, γ′z) ≡
⎧⎪⎪⎨⎪⎪⎩

(ι,N(γk),N(κ), z) if e′ > e ∧HJ ≠ []
(γk,N(κ),N(λ), γz) otherwise

where z =R([kb ∣ k <− γ′k])

and N(k) ≡ [
[0,0, . . .] if ke ∈ ψ′p
k otherwise} ∣k <− k]

Note that the posterior active validator key set κ′ is de-
fined such that keys belonging to the historical judgement
punish set ψ′p are replaced with a null key containing only
zeroes. The origin of this punish set is explained in section
10.

6.4. Sealing and Entropy Accumulation. The header
must contain a valid seal and valid vrf output. These are
two signatures both using the current slot’s seal key; the
message data of the former is the header’s serialization
omitting the seal component Hs, whereas the latter is
used as a bias-resistant entropy source and thus its mes-
sage must already have been fixed: we use the entropy
stemming from the vrf of the seal signature. Formally:

let i = γ′s[Ht]↺∶

γ′s ∈ ⟦C⟧ Ô⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

iy = Y(Hs) ,

Hs ∈ FEU (H)Ha
⟨XS ⌢ η′3 ir⟩ ,

T = 1
(56)

γ′s ∈ ⟦HB⟧ Ô⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i =Ha ,

Hs ∈ FEU (H)Ha
⟨XF ⌢ η′3⟩ ,

T = 0
(57)

Hv ∈ F[]Ha
⟨XE ⌢ Y(Hs)⟩(58)

XE = $jam_entropy(59)
XF = $jam_fallback_seal(60)
XS = $jam_seal(61)

Sealing using the ticket is of greater security, and we
utilize this knowledge when determining a candidate block
on which to extend the chain, detailed in section 15. We
thus note that the block was sealed under the regular se-
curity with the boolean marker T. We define this only for
the purpose of ease of later specification.

In addition to the entropy accumulator η0, we retain
three additional historical values of the accumulator at
the point of each of the three most recently ended epochs,
η1, η2 and η3. The second-oldest of these η2 is utilized to
help ensure future entropy is unbiased (see equation 62)
and seed the fallback seal-key generation function with

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 14

randomness (see equation 65). The oldest is used to re-
generate this randomness when verifying the seal above.

η ∈ ⟦H⟧4(62)

η0 defines the state of the randomness accumulator to
which the provably random output of the vrf, the signa-
ture over some unbiasable input, is combined each block.
η1 and η2 meanwhile retain the state of this accumulator
at the end of the two most recently ended epochs in order.

η′0 ≡H(η0 ⌢ Y(Hv))(63)

On an epoch transition (identified as the condition
e′ > e), we therefore rotate the accumulator value into
the history η1, η2 and η3:

(η′1, η′2, η′3) ≡
⎧⎪⎪⎨⎪⎪⎩

(η0, η1, η2) if e′ > e
(η1, η2, η3) otherwise

(64)

6.5. The Slot Key Sequence. The posterior slot key
sequence γ′s is one of three expressions depending on the
circumstance of the block. If the block is not the first in
an epoch, then it remains unchanged from the prior γs.
If the block signals the next epoch (by epoch index) and
the previous block’s slot was within the closing period of
the previous epoch, then it takes the value of the prior
ticket accumulator γ′a. Otherwise, it takes the value of
the fallback key sequence. Formally:

γ′s ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z(γa) if e′ = e + 1 ∧m′ ≥ Y ∧ ∣γa∣ = E
γs if e′ = e
F (η′2, κ′) otherwise

(65)

Here, we use Z as the inside-out sequencer function,
defined as follows:

(66) Z ∶{
⟦C⟧E → ⟦C⟧E

s↦ [s0, s∣s∣−1, s1, s∣s∣−2, . . .]

Finally, F is the fallback key sequence function which
selects an epoch’s worth of validator Bandersnatch keys
(⟦HB⟧E) at random from the validator key set k using the
entropy collected on-chain r:

(67) F ∶
⎧⎪⎪⎨⎪⎪⎩

⎧⎩H, ⟦K⟧⎫⎭→ ⟦HB⟧E
⎧⎩r, k⎫⎭↦ [k[E

−1(H4(r ⌢ E4(i)))]
↺
b ∣ i ∈ NE]

6.6. The Markers. The epoch and winning-tickets
markers are information placed in the header in order to
minimize data transfer necessary to determine the valida-
tor keys associated with any given epoch. They are partic-
ularly useful to nodes which do not synchronize the entire
state for any given block since they facilitate the secure
tracking of changes to the validator key sets using only
the chain of headers.

As mentioned earlier, the header’s epoch marker He is
either empty or, if the block is the first in a new epoch,
then a tuple of the epoch randomness and a sequence
of Bandersnatch keys defining the Bandersnatch valida-
tor keys (kb) beginning in the next epoch. Formally:

He ≡
⎧⎪⎪⎨⎪⎪⎩

(η′1, [ke ∣ k <− γ′k]) if e′ > e
∅ otherwise

(68)

The winning-tickets marker Hw is either empty or, if
the block is the first after the end of the submission period

for tickets and if the ticket accumulator is saturated, then
the final sequence of ticket identifiers. Formally:

Hw ≡
⎧⎪⎪⎨⎪⎪⎩

Z(γa) if e′ = e ∧m < Y ≤m′ ∧ ∣γa∣ = E
∅ otherwise

(69)

Note that this will not be honored if the next epoch
begins with a judgement in its extrinsic.

6.7. The Extrinsic and Tickets. The extrinsic ET is a
sequence of proofs of valid tickets; a ticket implies an entry
in our epochal “contest” to determine which validators are
privileged to author a block for each timeslot in the follow-
ing epoch. Tickets specify an ephemeral key and an entry
index, both of which are elective, together with a proof of
the ticket’s validity. The proof implies a ticket identity, a
high-entropy unbiasable 32-octet sequence, which is used
both as a score in the aforementioned contest and as input
to the on-chain vrf.

Towards the end of the epoch (i.e. Y slots from the
start) this contest is closed implying successive blocks
within the same epoch must have an empty tickets extrin-
sic. At this point, the following epoch’s seal key sequence
becomes fixed.

We define the extrinsic as a sequence of proofs of valid
tickets, each of which is a tuple of an entry index (a nat-
ural number less than N) and a proof of ticket validity.
Formally:

ET ∈ ⟦⎧⎪⎪⎩r ∈ NN, p ∈ F̄[]γz
⟨XT ⌢ η′2 r⟩⎫⎪⎪⎭⟧(70)

∣ET ∣ ≤
⎧⎪⎪⎨⎪⎪⎩

K if m′ < Y
0 otherwise

(71)

XT = $jam_ticket(72)

We define n as the set of new tickets, with the ticket
identity, a hash, defined as the output component of the
Bandersnatch Ringvrf proof:

n ≡ [⎧⎩y ▸
▸ Y(ip), r ▸

▸ ir⎫⎭∣ i <− ET](73)

The tickets submitted via the extrinsic must already
have been placed in order of their implied identity. Du-
plicate identities are never allowed lest a validator submit
the same ticket multiple times:

n = [xy __x ∈ n](74)
{xy ∣ x ∈ n} ⫰ {xy ∣ x ∈ γa}(75)

The new ticket accumulator γ′a is constructed by merg-
ing new tickets into the previous accumulator value (or
the empty sequence if it is a new epoch):

(76) γ′a ≡

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→⎡⎢⎢⎢⎢⎣
xy

^̂
^̂
^̂
x ∈ n ∪

⎧⎪⎪⎨⎪⎪⎩

∅ if e′ > e
γa otherwise

⎤⎥⎥⎥⎥⎦

E

The maximum size of the ticket accumulator is E. On
each block, the accumulator becomes the lowest items of
the sorted union of tickets from prior accumulator γa and
the submitted tickets. It is invalid to include useless tick-
ets in the extrinsic, so all submitted tickets must exist in
their posterior ticket accumulator. Formally:

n ⊂ γ′a(77)

Note that it can be shown that in the case of an empty
extrinsic ET = [], as implied by m′ ≥ Y, then γ′a = γa.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 15

7. Recent History

We retain in state information on the most recent H
blocks. This is used to preclude the possibility of dupli-
cate or out of date work-reports from being submitted.

(78) β ∈ ⟦⎧⎩h ∈ H, b ∈ ⟦H?⟧, s ∈ H, p ∈ ⟦H⟧∶C⎫⎭⟧∶H
For each recent block, we retain its header hash, its

state root, its accumulation-result mmr and the hash of
each work-report made into it which is no more than the
total number of cores, C = 341.

During the accumulation stage, a value with the par-
tial transition of this state is provided which contains the
update for the newly-known roots of the parent block:

(79) β† ≡ β except β†[0]s =Hr

The final state transition is then:

(80)
β′ ≡
←ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ
β†

⎧⎪⎪⎪⎪⎪⎪⎪⎩

p ▸
▸ [((gw)s)p ∣ g <− EG] ,

h ▸
▸H(H) , b , s ▸

▸ H
0

⎫⎪⎪⎪⎪⎪⎪⎪⎭

H

where b = A(last([[]] ⌢ [xb ∣ x <− β]), r)
and r =M2([x ^̂E(x) ∣ x ∈C],HK)

Thus, we extend the recent history with the new block’s
header hash, its accumulation-result Merkle tree root and
the set of work-reports made into it. Note that the
accumulation-result tree root r is derived from C (defined
in section 12) using the basic binary Merklization function
M2 (defined in appendix F) and appending it using the
mmr append function A (defined in appendix F.2) to form
a Merkle mountain range.

The state-trie root is as being the zero hash, H0 which
while inaccurate at the end state of the block β′, it is nev-
ertheless safe since β′ is not utilized except to define the
next block’s β†, which contains a corrected value for this.

8. Authorization

We have previously discussed the model of work-
packages and services in section 4.9, however we have yet
to make a substantial discussion of exactly how some core-
time resource may be apportioned to some work-package
and its associated service. In the YP Ethereum model, the
underlying resource, gas, is procured at the point of intro-
duction on-chain and the purchaser is always the same
agent who authors the data which describes the work to
be done (i.e. the transaction). Conversely, in Polkadot the
underlying resource, a parachain slot, is procured with a
substantial deposit for typically 24 months at a time and
the procurer, generally a parachain team, will often have
no direct relation to the author of the work to be done
(i.e. a parachain block).

On a principle of flexibility, we would wish Jam ca-
pable of supporting a range of interaction patterns both
Ethereum-style and Polkadot-style. In an effort to do so,
we introduce the authorization system, a means of disen-
tangling the intention of usage for some coretime from the
specification and submission of a particular workload to
be executed on it. We are thus able to disassociate the
purchase and assignment of coretime from the specific de-
termination of work to be done with it, and so are able to
support both Ethereum-style and Polkadot-style interac-
tion patterns.

8.1. Authorizers and Authorizations. The authoriza-
tion system involves two key concepts: authorizers and au-
thorizations. An authorization is simply a piece of opaque
data to be included with a work-package. An authorizer
meanwhile, is a piece of pre-parameterized logic which ac-
cepts as an additional parameter an authorization and,
when executed within a vm of prespecified computational
limits, provides a Boolean output denoting the veracity of
said authorization.

Authorizations are identified as the hash of their logic
(specified as the vm code) and their pre-parameterization.
The process by which work-packages are determined to be
authorized (or not) is not the competence of on-chain logic
and happens entirely in-core and as such is discussed in
section 13.2. However, on-chain logic must identify each
set of authorizers assigned to each core in order to ver-
ify that a work-package is legitimately able to utilize that
resource. It is this subsystem we will now define.

8.2. Pool and Queue. We define the set of authorizers
allowable for a particular core c as the authorizer pool
α[c]. To maintain this value, a further portion of state is
tracked for each core: the core’s current authorizer queue
φ[c], from which we draw values to fill the pool. Formally:

(81) α ∈ ⟦⟦H⟧∶O⟧C , φ ∈ ⟦⟦H⟧Q⟧C
Note: The portion of state φ may be altered only

through an exogenous call made from the accumulate logic
of an appropriately privileged service.

The state transition of a block involves placing a new
authorization into the pool from the queue:

∀c ∈ NC ∶ α′[c] ≡
←ÐÐÐÐÐÐÐÐÐÐÐÐ
F (c) φ′[c][Ht]↺

O

(82)

F (c) ≡
⎧⎪⎪⎨⎪⎪⎩

α[c]m {ga} if ∃g ∈ EG ∶ gc = c
α[c] otherwise

(83)

Since α′ is dependent on φ′, practically speaking, this
step must be computed after accumulation, the stage in
which φ′ is defined.

9. Service Accounts

As we already noted, a service in Jam is somewhat
analogous to a smart contract in Ethereum in that it in-
cludes amongst other items, a code component, a storage
component and a balance. Unlike Ethereum, the code is
split over two isolated entry-points each with their own
environmental conditions; one, refinement, is essentially
stateless and happens in-core, and the other, accumula-
tion, which is stateful and happens on-chain. It is the
latter which we will concern ourselves with now.

Service accounts are held in state under δ, a partial
mapping from a service identifier NS into a tuple of named
elements which specify the attributes of the service rele-
vant to the Jam protocol. Formally:

NS ≡ N232(84)
δ ∈ D⟨NS → A⟩(85)

The service account is defined as the tuple of storage
dictionary s, preimage lookup dictionaries p and l, code
hash c, and balance b as well as the two code gas limits g

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 16

& m. Formally:

A ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ∈ D⟨H→ Y⟩ , p ∈ D⟨H→ Y⟩ ,
l ∈ D⟨⎧⎩H, NL

⎫⎭→ [NT]∶3⟩ ,
c ∈ H , b ∈ NB , g ∈ ZG , m ∈ ZG

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(86)

Thus, the balance of the service of index s would be
denoted δ[s]b and the storage item of key k ∈ H for that
service is written δ[s]s[k].

9.1. Code and Gas. The code c of a service account is
represented by a hash which, if the service is to be func-
tional, must be present within its preimage lookup (see
section 9.2). We thus define the actual code c:

∀a ∈ A ∶ ac ≡
⎧⎪⎪⎨⎪⎪⎩

ap[ac] if ac ∈ ap

∅ otherwise
(87)

There are three entry-points in the code:
0 refine: Refinement, executed in-core and state-

less.10

1 accumulate: Accumulation, executed on-chain
and stateful.

2 on_transfer: Transfer handler, executed on-
chain and stateful.

Whereas the first, executing in-core, is described in
more detail in section 13.2, the latter two are defined in
the present section.

As stated in appendix A, execution time in the Jam
virtual machine is measured deterministically in units of
gas, represented as a 64-bit integer formally denoted ZG.
There are two limits specified in the account, g, the min-
imum gas required in order to execute the Accumulate
entry-point of the service’s code, and m, the minimum
required for the On Transfer entry-point.

9.2. Preimage Lookups. In addition to storing data in
arbitrary key/value pairs available only on-chain, an ac-
count may also solicit data to be made available also in-
core, and thus available to the Refine logic of the service’s
code. State concerning this facility is held under the ser-
vice’s p and l components.

There are several differences between preimage-lookups
and storage. Firstly, preimage-lookups act as a map-
ping from a hash to its preimage, whereas general storage
maps arbitrary keys to values. Secondly, preimage data
is supplied extrinsically, whereas storage data originates
as part of the service’s accumulation. Thirdly preimage
data, once supplied, may not be removed freely; instead
it goes through a process of being marked as unavailable,
and only after a period of time may it be removed from
state. This ensures that historical information on its exis-
tence is retained. The final point especially is important
since preimage data is designed to be queried in-core, un-
der the Refine logic of the service’s code, and thus it is
important that the historical availability of the preimage
is known.

We begin by reformulating the portion of state concern-
ing our data-lookup system. The purpose of this system
is to provide a means of storing static data on-chain such
that it may later be made available within the execution
of any service code as a function accepting only the hash
of the data and its length in octets.

During the on-chain execution of the Accumulate func-
tion, this is trivial to achieve since there is inherently a
state which all validators verifying the block necessarily
have complete knowledge of, i.e. σ. However, for the in-
core execution of Refine, there is no such state inherently
available to all validators; we thus name a historical state,
the lookup anchor which must be considered recently fi-
nalized before the work result may be accumulated hence
providing this guarantee.

By retaining historical information on its availability,
we become confident that any validator with a recently fi-
nalized view of the chain is able to determine whether any
given preimage was available at any time within the period
where auditing may occur. This ensures confidence that
judgements will be deterministic even without consensus
on chain state.

Restated, we must be able to define some historical
lookup function Λ which determines whether the preim-
age of some hash h was available for lookup by some ser-
vice account a at some timeslot t, and if so, provide its
preimage:

(88) Λ∶{
(A,NHt−CD...Ht ,H)→ Y?

(a, t,H(p))↦ v ∶ v ∈ {p,∅}

This function is defined shortly below in equation 90.
The preimage lookup for some service of index s is de-

noted δ[s]p is a dictionary mapping a hash to its corre-
sponding preimage. Additionally, there is metadata asso-
ciated with the lookup denoted δ[s]l which is a dictionary
mapping some hash and presupposed length into historical
information.

9.2.1. Invariants. The state of the lookup system natu-
rally satisfies a number of invariants. Firstly, any preim-
age value must correspond to its hash, equation 89. Sec-
ondly, a preimage value being in state implies that its
hash and length pair has some associated status, also in
equation 89. Formally:

(89) ∀a ∈ A, (h↦ p) ∈ ap ⇒ h =H(p) ∧⎧⎩h, ∣p∣⎫⎭∈ K(al)

9.2.2. Semantics. The historical status component h ∈
[NT]∶3 is a sequence of up to three time slots and the
cardinality of this sequence implies one of four modes:

● h = []: The preimage is requested, but has not yet
been supplied.

● h ∈ ⟦NT ⟧1: The preimage is available and has been
from time h0.

● h ∈ ⟦NT ⟧2: The previously available preimage is
now unavailable since time h1. It had been avail-
able from time h0.

● h ∈ ⟦NT ⟧3: The preimage is available and has been
from time h2. It had previously been available
from time h0 until time h1.

10Technically there is some small assumption of state, namely that some modestly recent instance of each service’s preimages. The
specifics of this are discussed in section 13.2.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 17

The historical lookup function Λ may now be defined
as:

(90)

Λ∶ (A,NT ,H)→ Y?

Λ(a, t, h) ≡
⎧⎪⎪⎨⎪⎪⎩

ap[h] if h ∈ K(ap) ∧ I(al[h, ∣ap[h]∣], t)
∅ otherwise

where I(l, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

� if [] = l
x ≤ t if [x] = l
x ≤ t < y if [x, y] = l
x ≤ t < y ∨ z ≤ t if [x, y, z] = l

9.3. Account Footprint and Threshold Balance. We
define the dependent values i and l as the storage footprint
of the service, specifically the number of items in storage
and the total number of octets used in storage. They are
defined purely in terms of the storage map of a service,
and it must be assumed that whenever a service’s storage
is changed, these change also.

Furthermore, as we will see in the account serialization
function in section C, these are expected to be found ex-
plicitly within the Merklized state data. Because of this
we make explicit their set.

We may then define a second dependent term t, the
minimum, or threshold, balance needed for any given ser-
vice account in terms of its storage footprint.

∀a ∈ V(δ) ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai ∈ N232 ≡ 2 ⋅ ∣al ∣ + ∣as ∣
al ∈ N264 ≡ ∑

(h,z)∈K(al)
81 + z

+ ∑
x∈V(as)

32 + ∣x∣

at ∈ NB ≡ BS +BI ⋅ ai +BL ⋅ al

(91)

9.4. Service Privileges. Up to three services may be
recognized as privileged. The portion of state in which
this is held is denoted χ and has three components, each
a service index. m is the index of the manager service,
the service able to effect an alteration of χ from block to
block. a and v are each the indices of services able to alter
φ and ι from block to block. Formally:

χ ≡⎧⎩χm ∈ NS , χa ∈ NS , χv ∈ NS
⎫⎭(92)

10. Judgements

Jam provides a means of recording a vote amongst all
validators over the validity of a work-report, a unit of work
done within Jam (for greater detail on the nature of a
work-report, see section 11). Such a vote is not expected
to happen very often in practice (if at all), however it
is an important security backstop, allowing a convenient
manner of removing troublesome keys from the validator
set at short notice where there is consensus over their mal-
function. It also helps coordinate the ability of unfinalized
chain-extensions to be reverted and replaced with an ex-
tension which does not contain some invalid work-report.

Generally speaking, judgement data will come about
as a result of a dispute between validators, an off-chain
process described in section 10. A judgement against a
report will imply that the chain will have been reverted
to immediately prior to the accumulation of that report.
Placing the judgement on-chain has the effect of cancelling
its accumulation. The specific strategy for chain selection
is described fully in section 15.

In the case that a sufficient number of validator nodes
do make some judgement in EJ , then an indexed record
of that judgement is placed on-chain (in ψ, the portion of
state handling dispute judgements).

Having a persistent on-chain record is helpful in a num-
ber of ways. Firstly it provides a very simple means of
recognizing the circumstances under which action against
a validator must be taken by any higher-level validator-
selection logic. Should Jam be used for a public network
such as Polkadot, this would imply the slashing of the of-
fending validator’s stake on the staking parachain.

As mentioned, recording reports found to have a high
confidence of invalidity is important to ensure that said
reports are not allowed to be resubmitted. Conversely,
recording reports found to be valid ensures that additional
disputes cannot be raised in the future of the chain.

10.1. State. The judgements state includes three items,
an allow-set (ψa), a ban-set (ψb) and a punish-set (ψp).
The allow-set contains the hashes of all work-reports
which were disputed and judged to be accurate. The ban-
set contains the hashes of all work-reports which were dis-
puted and whose accuracy could not be confidently con-
firmed. The punish-set is a set of keys of Bandersnatch
keys which were found to have guaranteed a report which
was confidently found to be invalid.
(93) ψ ≡⎧⎩ψa, ψb, ψp, ψk

⎫⎭
We store the last epoch’s validator set in ψk:

(94) ψ′k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

κ if ⌊τ
′

E
⌋ ≠ ⌊ τ

E
⌋

ψk otherwise

10.2. Extrinsic. The judgements extrinsic, EJ may con-
tain one or more judgements as a compilation of signa-
tures coming from exactly two-thirds plus one of either
the active validator set (i.e. the Ed25519 keys of κ) or the
previous epoch’s validator set (i.e. the keys of ψk):

(95) EJ ∈ ⟦⎧⎪⎪⎩H, ⟦
⎧⎩{⊺,�},NV,F⎫⎭⟧⌊2/3V⌋+1

⎫⎪⎪⎭⟧

All signatures must be valid in terms of one of the two
allowed validator key-sets. Note that the two epoch’s key-
sets may not be mixed! Formally:

(96)

∀(r,v) ∈ EJ ,∀(v, i, s) ∈ v ∶ s ∈ Ek[i]e⟨Xv ⌢ r⟩
where X⊺ = $jam_valid

and X� = $jam_invalid

k ∈ {κ,ψk}
Judgements must be ordered by report hash and there

may be no duplicate report hashes within the extrinsic,
nor amongst any past reported hashes. Formally:

EJ = [r__⎧⎩r,v⎫⎭∈ EJ](97)
{r ∣⎧⎩r,v⎫⎭} ⫰ ψa ∪ψb(98)

The votes of all judgements must be ordered by val-
idator index and there may be no duplicate such indices.
Formally:
(99) ∀(r,v) ∈ EJ ∶ v = [i__⎧⎩v, i, s⎫⎭∈ v]

We define J as the sequence of judgements introduced
in the block’s extrinsic (and ordered respectively), with
the sequence of signatures substituted with the sum of
votes over the signatures. We require this total to be
exactly zero, two-thirds-plus-one or one-third-plus-one of

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 18

the validator set indicating, respectively, that we are con-
fident of the report’s validity, confident of its invalidity,
or lacking confidence in either. This requirement may
seem somewhat arbitrary, but these happen to be the de-
cision thresholds for our three possible actions and are
acceptable since the security assumptions include the re-
quirement that at least two-thirds-plus-one validators are
live (stewart2018efficient discusses the security impli-
cations in depth).

Formally:
J ∈ ⟦⎧⎩H, ⟦HB⟧2∶3,N⎫⎭⟧(100)

J =
⎡⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
r, ∑
⎧⎩v,i,s⎫⎭∈v

v

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

RRRRRRRRRRRR
⎧⎩r,v⎫⎭<− EJ

⎤⎥⎥⎥⎥⎦
(101)

∀⎧⎩r, t⎫⎭∈ J ∶ t ∈ {0, ⌊1/3V⌋, ⌊2/3V⌋ + 1}(102)
Note that t is the threshold of judgements that the re-

port is valid, calculated by summing Boolean values in
their implicit equivalence to binary digits of the set N2.

We clear any work-reports judged to be non-valid from
their core:

(103) ∀c ∈ NC ∶ ρ†[c] =
⎧⎪⎪⎨⎪⎪⎩

∅ if {(ρ[c]r, t) ∈ J, t < ⌊2/3V⌋}
ρc otherwise

The allow-set assimilates the hashes of any reports
we judge to be valid. The ban-set assimilates any other
judged report-hashes. Finally, the punish-set accumulates
the guarantor keys of any report judged to be invalid:

ψ′a ≡ ψa ∪ {r ∣⎧⎩r, ⌊2/3V⌋ + 1⎫⎭∈ J}(104)
ψ′b ≡ ψb ∪ {r ∣⎧⎩r, t⎫⎭∈ J, t ≠ ⌊2/3V⌋ + 1}(105)
ψ′p ≡ ψp ∪ {ρ[c]g ∣ (ρ[c]r,0) ∈ J}(106)

Note that the augmented punish-set is utilized when
determining κ′ to nullify any validator keys which appear
in the punish-list.

10.3. Header. The judgement marker must contain ex-
actly the sequence of report hashes judged not as confi-
dently valid (i.e. either controversial or invalid). Formally:
(107) Hj ≡ [r ∣⎧⎩r, t⎫⎭<− J, t ≠ 0]

11. Reporting and Assurance

Reporting and assurance are the two on-chain processes
we do to allow the results of in-core computation to make
its way into the service state singleton, δ. A work-package,
which comprises several work items, is transformed by val-
idators acting as guarantors into its corresponding work-
report, which similarly comprises several work outputs and
then presented on-chain within the guarantees extrinsic.
At this point, the work-package is erasure coded into a
multitude of segments and each segment distributed to
the associated validator who then attests to its availabil-
ity through an assurance placed on-chain. After either
enough assurances or a time-out (whichever happens first),
the work-report is considered available, and the work out-
puts transform the state of their associated service by
virtue of accumulation, covered in section 12.

From the perspective of the work-report, therefore,
the guarantee happens first and the assurance after-
wards. However, from the perspective of a block’s state-
transition, the assurances are best processed first since
each core may only have a single work-report pending its
package becoming available at a time. Thus, we will first

cover the transition arising from processing the availability
assurances followed by the work-report guarantees. This
synchroneity can be seen formally through the require-
ment of an intermediate state ρ‡, utilized later in equation
134.

11.1. State. The state of the reporting and availability
portion of the protocol is largely contained within ρ, which
tracks the work-reports which have been reported but not
yet accumulated and the identities of the guarantors who
reported them and the time at which it was reported. As
mentioned earlier, at only one report may be assigned to
a core at any given time. Formally:
(108) ρ ∈ ⟦⎧⎩w ∈W, g ∈ ⟦HE⟧2∶3, t ∈ NT

⎫⎭?⟧C
As usual, intermediate and posterior values (ρ†, ρ‡, ρ′)

are held under the same constraints as the prior value.

11.1.1. Work Report. A work-report, of the set W, is de-
fined as a tuple of authorizer hash and output, the refine-
ment context, the package specification and the results of
the evaluation of each of the items in the package, which
is always at least one item and may be no more than I
items. Formally:
(109) W ≡⎧⎩a ∈ H, o ∈ Y, x ∈ X, s ∈ S, r ∈ ⟦L⟧1∶I⎫⎭

The total serialized size of a work-report may be no
greater than WR bytes:
(110) ∀w ∈W ∶ ∣E(w)∣ ≤WR

11.1.2. Refinement Context. A refinement context, de-
noted by the set X, describes the context of the chain at
the point that the report’s corresponding work-package
was evaluated. It identifies two historical blocks, the an-
chor, header hash a along with its associated posterior
state-root s and posterior Beefy root b; and the lookup-
anchor, header hash l and of timeslot t. Finally, it iden-
tifies the hash of an optional prerequisite work-package p.
Formally:

(111) X ≡
⎧⎪⎪⎪⎪⎪⎪⎩

a ∈ H, s ∈ H, b ∈ H,
l ∈ H, t ∈ NT , p ∈ H?

⎫⎪⎪⎪⎪⎪⎪⎭
11.1.3. Work Package Specification. We define the set of
work-package specifications, S, as the tuple of the work-
package’s hash and serialized length together with an era-
sure root. Formally:

S ≡⎧⎩h ∈ H, l ∈ NL, u ∈ H⎫⎭(112)

11.1.4. Work Result. We finally come to define a work re-
sult, L, which is the data conduit by which services’ states
may be altered through the computation done within a
work-package.

L ≡ (s ∈ NS , c ∈ H, l ∈ H, g ∈ ZG, o ∈ Y ∪ J)(113)
Work results are a tuple comprising several items.

Firstly s, the index of the service whose state is to be
altered and thus whose refine code was already executed.
We include the hash of the code of the service at the time
of being reported c, which must be accurately predicted
within the work-report according to equation 144;

Next, the hash of the payload (l) within the work item
which was executed in the refine stage to give this result.
This has no immediate relevance, but is something pro-
vided to the accumulation logic of the service. We follow
with the gas prioritization ratio g used when determining

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 19

how much gas should be allocated to execute of this item’s
accumulate.

Finally, there is the output or error of the execution of
the code o, which may be either an octet sequence in case
it was successful, or a member of the set J, if not. This
latter set is defined as the set of possible errors, formally:

J ∈ {∞,☇, BAD, BIG}(114)

The first two are special values concerning execution of
the virtual machine, ∞ denoting an out-of-gas error and
☇ denoting an unexpected program termination. Of the
remaining two, the first indicates that the service’s code
was not available for lookup in state at the posterior state
of the lookup-anchor block. The second indicates that
the code was available but was beyond the maximum size
allowed S.

11.2. Package Availability Assurances. We first de-
fine ρ‡, the intermediate state to be utilized next in sec-
tion 11.4 as well as R, the set of available work-reports,
which will we utilize later in section 12. Both require the
integration of information from the assurances extrinsic
EA.

11.2.1. The Assurances Extrinsic. The assurances extrin-
sic is a sequence of assurance values, at most one per val-
idator. Each assurance is a sequence of binary values (i.e.
a bitstring), one per core, together with a signature and
the index of the validator who is assuring. A value of 1
(or ⊺, if interpreted as a Boolean) at any given index im-
plies that the validator assures they are contributing to
its availability.11 Formally:

EA ∈ ⟦⎧⎩a ∈ H, f ∈ BC, v ∈ NV, s ∈ E⎫⎭⟧∶V(115)

The assurances must all be anchored on the parent and
ordered by validator index:

∀a ∈ EA ∶ aa =Hp(116)
∀i ∈ {1 . . . ∣EA∣} ∶ EA[i − 1]v < EA[i]v(117)

The signature must be one whose public key is that
of the validator assuring and whose message is the seri-
alization of the parent hash Hp and the aforementioned
bitstring:

∀a ∈ EA ∶ as ∈ Eκ[av]e⟨XA ⌢H(Hp, af)⟩(118)
XA = $jam_available(119)

A bit may only be set if the corresponding core has a
report pending availability on it:

∀a ∈ EA ∶ ∀c ∈ NC ∶ af [c] Ô⇒ ρ†[c] ≠ ∅(120)

11.2.2. Available Reports. A work-report is said to be-
come available if and only if there are a clear 2/3 super-
majority of validators who have marked its core as set
within the block’s assurance extrinsic. Formally, we de-
fine the series of available work-reports R as:

R ≡
⎡⎢⎢⎢⎢⎣
ρ†[c]w

RRRRRRRRRRR
c <− NC, ∑

a∈EA

av[c] > 2/3V
⎤⎥⎥⎥⎥⎦

(121)

This value is utilized in the definition of both δ′ and ρ‡

which we will define presently as equivalent to ρ† except

for the removal of items which are now available:

∀c ∈ NC ∶ ρ‡[c] ≡
⎧⎪⎪⎨⎪⎪⎩

∅ if ρ[c]w ∈R
ρ†[c] otherwise

(122)

11.3. Guarantor Assignments. Every block, each core
has some particular number of validators uniquely as-
signed to it assigned to guarantee work reports for it.
With V = 1,023 validators and C = 341 cores, this results
in exactly V/C = 3 validators per core. The Ed25519 keys
of these validators are denoted by G:

(123) G ∈ ⟦⟦HE⟧V/C⟧C
We determine the core to which any given validator is

assigned through a shuffle using epochal entropy and a
periodic rotation to help guard the security and liveness
of the network. We use η2 for the epochal entropy rather
than η1 to avoid the possibility of fork-magnification where
uncertainty about chain state at the end of an epoch could
give rise to two established forks before it naturally re-
solves.

We define the permute function P , the rotation func-
tion R and finally the guarantor assignments G as follows:

P (e, t) ≡ R(F([⌊V ⋅ i
C
⌋ ∣ i <− NV], e), ⌊

tmod E

R
⌋)(124)

R(c, n) ≡ [(x + n)mod C ∣ x <− c](125)
∀c ∈ NC ∶G ≡ [κ′i ∣ i <− NV , P (η′2, τ ′)i = c](126)

We also define G∗, which is equivalent to the value G
as it would have been under the previous rotation:

∀c ∈ NC ∶G∗ ≡ [ki ∣ i <− NV , P (e, τ ′ − R)i = c](127)

where e =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(η′2, κ) if ⌊τ
′ − R

E
⌋ = ⌊τ

′

E
⌋

(η′3, λ) otherwise
(128)

11.4. Work Report Guarantees. We begin by defin-
ing the guarantees extrinsic, EG, a series of guarantees, at
most one for each core, each of which is a tuple of a core
index, work-report, a credential a and its corresponding
timeslot t. Formally:
(129) EG ∈ ⟦⎧⎩c ∈ NC, w ∈W, t ∈ NT , a ∈ ⟦E?⟧3⎫⎭⟧∶C

The credential is itself a sequence of either two or three
tuples of a signature and a validator index. The core index
of each guarantee must be in ascending order:

EG = [ic ^̂ i ∈ EG](130)
Credentials may only have one missing signature:

(131) ∀g ∈ EG ∶ ∣{x ∈ ga ∶ x ≠ ∅}∣ ≥ 2
The signature must be one whose public key is that of

the validator identified in the credential, and whose mes-
sage is the serialization of the core index and the work-
report. The signing validators must be assigned to the
core in question in either this block G if the timeslot for
the guarantee is in the same rotation as this block’s times-
lot, or in the most recent previous set of assignments, G∗:

∀g ∈ EG ∶

∀i ∈ N3, ga[i] ≠ ∅ ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

as ∈ Ek[gc]i⟨XG ⌢H(gc, gr)⟩

where k =
⎧⎪⎪⎨⎪⎪⎩

G if ⌊ τ
′

R
⌋ = ⌊ gt

R
⌋

G∗ otherwise
(132)

11This is a “soft” implication since there is no consequence on-chain if dishonestly reported. For more information on this implication
see section 13.4.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 20

(133) XG = $jam_guarantee

No reports may be placed on cores with a report pend-
ing availability on it unless it has timed out. In the latter
case, U = 5 slots must have elapsed after the report was
made. A report is invalid if the authorizer hash is not
present in the authorizer pool of the core on which the
work is reported. Formally:

(134) ∀g ∈ EG ∶
⎧⎪⎪⎨⎪⎪⎩

ρ‡[gc] = ∅ ∨Ht ≥ ρ‡[gc]t +U ,

ga ∈ α[gc]

We denote w to be the set of work-reports in the
present extrinsic E:

let w = {gw ∣ g ∈ EG}(135)

We specify the maximum total accumulation gas re-
quirement a work-report may imply as GA, and we require
the sum of all services’ minimum gas requirements to be
no greater than this:

∀w ∈w ∶ ∑
s∈(wr)s

δ[s]m ≤ GA(136)

11.4.1. Contextual Validity of Reports. For convenience,
we define two equivalences x and p to be, respectively,
the set of all contexts and work-package hashes within
the extrinsic:

(137) let x ≡ {wx ∣ w ∈w} , p ≡ {(ws)h ∣ w ∈w}

There must be no duplicate work-package hashes (i.e.
two work-reports of the same package). Therefore, we
require the cardinality of p to be the length of the work-
report sequence w:

(138) ∣p∣ = ∣w∣

We require that the anchor block be within the last H
blocks and that its details be correct by ensuring that it
appears within our most recent blocks β:

∀x ∈ x ∶ ∃y ∈ β ∶ xa = yh ∧ xs = ys ∧ xb =HK(EM(yb))(139)

We require that each lookup-anchor block be within
the last L timeslots:

∀x ∈ x ∶ xt ≥Ht − L(140)

We also require that we have a record of it; this is one of
the few conditions which cannot be checked purely with
on-chain state and must be checked by virtue of retain-
ing the series of the last L headers as the ancestor set A.
Since it is determined through the header chain, it is still
deterministic and calculable. Formally:

∀x ∈ x ∶ ∃h ∈A ∶ ht = xt ∧H(h) = xh(141)

We require that the work-package of the report not be
the work-package of some other report made in the past.
Since the work-package implies the anchor block, and the
anchor block is limited to the most recent blocks, we need
only ensure that the work-package not appear in our re-
cent history:

(142) ∀p ∈ p,∀x ∈ β ∶ p /∈ xp

We require that the prerequisite work-package, if
present, be either in the extrinsic or in our recent history:

(143)
∀w ∈w, (wx)p ≠ ∅ ∶
(wx)p ∈ p ∪ {x ∣ x ∈ bp, b ∈ β}

We require that all work results within the extrinsic
predicted the correct code hash for their corresponding
service:

∀w ∈w,∀r ∈ wr ∶ rc = δ[rs]c(144)

11.5. Transitioning for Reports. We define ρ′ as be-
ing equivalent to ρ‡, except where the extrinsic replaced
an entry. In the case an entry is replaced, the new value
includes the present time τ ′ allowing for the value may be
replaced without respect to its availability once sufficient
time has elapsed (see equation 134).

(145)
∀c ∈ NC ∶ ρ′[c] ≡

⎧⎪⎪⎨⎪⎪⎩

⎧⎩w, g ▸
▸ G(a), t ▸▸ τ ′⎫⎭ if ∃⎧⎩c,w, a⎫⎭∈ EG

ρ‡[c] otherwise
where G(a) ≡ {κ[v]e ∣ (s, v) ∈ a}

This concludes the section on reporting and assurance.
We now have a complete definition of ρ′ together with R
to be utilized in section 12, describing the portion of the
state transition happening once a work-report is guaran-
teed and made available.

12. Accumulation

Accumulation may be defined as some function whose
arguments are R and δ together with selected portions
of (at times partially transitioned) state and which yields
the posterior service state δ′ together with additional state
elements ι′, φ′ and χ′.

The proposition of accumulation is in fact quite sim-
ple: we merely wish to execute the Accumulate logic of
the service code of each of the services which has at least
one work output, passing to it the work outputs and use-
ful contextual information. However, there are three main
complications. Firstly, we must define the execution envi-
ronment of this logic and in particular the host functions
available to it. Secondly, we must define the amount of
gas to be allowed for each service’s execution. Finally, we
must determine the nature of transfers within Accumu-
late which, as we will see, leads to the need for a second
entry-point, on-transfer.

12.1. Preimage Integration. Prior to accumulation, we
must first integrate all preimages provided in the lookup
extrinsic. The lookup extrinsic is a sequence of pairs of
service indices and data. These pairs must be ordered
and without duplicates (equation 147 requires this). The
data must have been solicited by a service but not yet be
provided. Formally:

EP ∈ ⟦⎧⎩NS , Y⎫⎭⟧(146)
EP = [i__ i ∈ EP](147)

∀⎧⎩s, p⎫⎭∈ EP ∶ {
K(δ[s]p) /∋ H(p) ,
δ[s]l[⎧⎩H(p), ∣p∣⎫⎭] = []

(148)

We define δ† as the state after the integration of the
preimages:

δ† = δ ex. ∀⎧⎩s, p⎫⎭∈ EP ∶
⎧⎪⎪⎨⎪⎪⎩

δ†[s]p[H(p)] = p

δ†[s]l[H(p), ∣p∣] = [τ ′]
(149)

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 21

12.2. Gas Accounting. We define S, the set of all ser-
vices which will be accumulated in this block; this is all
services which have at least one work output within R,
together with all privileged services, χ. Formally:

S ≡ {rs ∣ w ∈R, r ∈ wr} ∪ {χm, χa, χv}(150)
We calculate the gas attributable for each service as

the sum of each of the service’s work outputs’ share of
their report’s elective accumulation gas together with the
subtotal of minimum gas requirements:

(151) G∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

NS → ZG

s↦∑
w∈R

∑
r∈wr,rs=s

δ†[s]g +

⎢⎢⎢⎢⎢⎢⎢⎣

rg ⋅
GA − ∑

r∈wr

δ†[rs]g

∑r∈wr
rg

⎥⎥⎥⎥⎥⎥⎥⎦
12.3. Wrangling. We finally define the results which will
be given as an operand into the accumulate function for
each service in S. This is a sequence of operand tuples O,
one sequence for each service in S. Each sequence contains
one element per work output (or error) to be accumulated
for that service, together with said work output’s payload
hash, package hash and authorization output. The tu-
ples are sequenced in the same order as they appear in R.
Formally:

O ≡⎧⎩o ∈ Y ∪ J, l ∈ H, k ∈ H, a ∈ Y⎫⎭(152)

M ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

NS → ⟦O⟧

s↦

⎡⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎪⎪⎩

o ▸
▸ ro, l ▸▸ rp,

a ▸
▸ wo, k ▸

▸ (ws)h

⎫⎪⎪⎪⎪⎪⎪⎭

RRRRRRRRRRRRRRRR

w ∈R,
r ∈ wr,

rs = s

⎤⎥⎥⎥⎥⎥⎥⎦

(153)

12.4. Invocation. Within this section, we define A, the
function which conducts the accumulation of a single
service. Formally speaking, A assumes omnipresence of
timeslot Ht and some prior state components δ†, ν, Rd,
and takes as specific arguments the service index s ∈ S
(from which it may derive the wrangled results M(s) and
gas limit G(s)) and yields values for δ†[s] and staging as-
signments into φ, ι together with a series of lookup solici-
tations/forgets, a series of deferred transfers and C map-
ping from service index to Beefy commitment hashes.

We first denote the set of deferred transfers as T, not-
ing that a transfer includes a memo component m of 64
octets, together with the service index of the sender s,
the service index of the receiver d, the amount of tokens
to be transferred a and the gas limit g for the transfer.
Formally:

T ≡⎧⎩s ∈ NS , d ∈ NS , a ∈ NB , m ∈ YM, g ∈ ZG
⎫⎭(154)

We may then define A, the mapping from the index of
accumulated services to the various components in terms
of which we will be imminently defining our posterior
state:

A∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

NS →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ∈ A?, v ∈ KV, t ∈ ⟦T⟧, r ∈ H,

c ∈ ⟦⟦H⟧Q⟧C, n ∈ D⟨NS → A⟩,
p ∈⎧⎩m ∈ NS , a ∈ NS , v ∈ NS

⎫⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
s↦ ΨA(δ†, s,M(s),G(s))

(155)

As can be seen plainly, our accumulation mapping A
combines portions of the prior state into arguments for
a virtual-machine invocation. Specifically the service ac-
counts δ† together with the index of the service in question

s and its wrangled refine-results M(s) and gas limit G(s)
are arranged to create the arguments for ΨA, itself using
a virtual-machine invocation as defined in appendix B.4.

The Beefy commitment map is a function mapping all
accumulated services to their accumulation result (the r
component of the result of A). This is utilized in deter-
mining the accumulation-result tree root for the present
block, useful for the Beefy protocol:

(156) C ≡ {(s,A(s)r) ∣ s ∈ S,A(s)r ≠ ∅}

Given our mapping A, which may be calculated ex-
haustively from the vm invocations of each accumulated
service S, we may define the posterior state δ′, χ′, φ′ and
ι′ as the result of integrating A into our state.

12.4.1. Privileged Transitions. The staging core assign-
ments, and validator keys and privileged service set are
each altered based on the effects of the accumulation of
each of the three privileged services:

χ′ ≡ A(χm)p , φ′ ≡ A(χa)c , ι′ ≡ A(χv)v(157)

12.4.2. Service Account Transitions. Finally, we integrate
all changes to the service accounts into state.

We note that all newly added service indices, defined as
K(A(s)n) for any accumulated service s, must not conflict
with the indices of existing services or newly added ser-
vices. This should never happen, since new indices are ex-
plicitly selected to avoid such conflicts, but in the unlikely
event it happens, the block would be invalid. Formally:

(158)
∀s ∈ S ∶ K(A(s)n) ∩K(δ†) = ∅,

∀t ∈ S ∖ {s} ∶ K(A(s)n) ∩K(A(t)n) = ∅

We first define δ‡, an intermediate state after main ac-
cumulation but before the transfers have been credited
and handled:

(159)

K(δ‡) ≡ (K(δ†) ∪ ⋃
s∈S
K(A(s)n)) ∖ {s ∣

s ∈ S,
ss = ∅

}

δ‡[s] ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A(s)s if s ∈ S
A(t)n[s] if ∃!t ∶ t ∈ S, s ∈ K(A(t)n)
δ†[s] otherwise

We denote R(s) the sequence of transfers received by a
given service of index s, in order of them being sent from
services of ascending index. (If some service s received
no transfers or simply does not exist then R(s) would be
validly defined as the empty sequence.) Formally:

R∶{
NS → ⟦T⟧
d↦ [t ∣ s <− S, t <− A(s)t, td = d]

(160)

The posterior state δ′ may then be defined as the inter-
mediate state with all the deferred effects of the transfers
applied:

(161) δ′ = {s↦ ΨT (δ‡, a,R(a)) ∣ (s↦ a) ∈ δ‡}

Note that ΨT is defined in appendix B.5 such that it
results in δ‡[d], i.e. no difference to the account’s inter-
mediate state, if R(d) = [], i.e. said account received no
transfers.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 22

13. Work Packages and Work Reports

13.1. Honest Behavior. We have so far specified how
to recognize blocks for a correctly transitioning Jam
blockchain. Through defining the state transition func-
tion and a state Merklization function, we have also de-
fined how to recognize a valid header. While it is not
especially difficult to understand how a new block may be
authored for any node which controls a key which would
allow the creation of the two signatures in the header, nor
indeed to fill in the other header fields, readers will note
that the contents of the extrinsic remain unclear.

We define not only correct behavior through the cre-
ation of correct blocks but also honest behavior, which in-
volves the node taking part in several off-chain activities.
This does have analogous aspects within YP Ethereum,
though it is not mentioned so explicitly in said document:
the creation of blocks along with the gossiping and inclu-
sion of transactions within those blocks would all count as
off-chain activities for which honest behavior is helpful. In
Jam’s case, honest behavior is well-defined and expected
of at least 2/3 of validators.

Beyond the production of blocks, incentivized honest
behavior includes:

● the guaranteeing and reporting of work-packages,
along with chunking and distribution of both the
chunks and the work-package itself, discussed in
section 13.3;

● assuring the availability of work-packages after
being in receipt of their data;

● making and submitting judgements on the cor-
rectness of work-reports;

● determining which work-reports to audit, fetching
and auditing them, and creating and distributing
an adverse judgement to other nodes based on the
outcome of the audit;

● submitting the correct amount of work seen being
done by other validators, discussed in section 16.

We begin with the first of these, the guaranteeing of
work-packages.

13.2. Packages and Items. We begin by defining a
work-package, of set P, and its constituent work items,
of set I. A work-package includes a simple blob acting as
an authorization token j, a service identifier for where au-
thorization code is hosted h, an authorization code hash c
and a parameterization blob p, a context x and a sequence
of work items limited in size i:

(162) P ∈⎧⎩j ∈ Y, h ∈ NS, c ∈ H,p ∈ Y,x ∈ X, i ∈ I1∶I⎫⎭
We limit the encoded size of work-packages to a little

over 6mb in order to allow for 1mb/s/core data through-
put:

∣E(P)∣ ≤WP(163)
WP = 6 ⋅ 220 + 216(164)

A work item includes the identifier of the service to
which it relates s, the code hash of the service at the time
of reporting, and whose preimage must be available from
the perspective of the lookup anchor block c, a payload
blob y, and a gas limit g:

(165) I ∈⎧⎩s ∈ NS, c ∈ H,y ∈ Y, g ∈ NG
⎫⎭

We define the work-package’s implied authorizer as pa,
the hash of the concatenation of the authorization code
and the parameterization. We define the authorization
code as pc and require that it be available at the time
of the lookup anchor block from the historical lookup of
service h. Formally:

(166) ∀p ∈ P ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pa ≡H(pc ⌢ pp)
pc ≡H(δ[ph], (px)t,pc)
pc ∈ Y

(Λ is the historical lookup function defined in equation
90.)

We now come to the work result computation function
Ξ. This forms the basis for all utilization of cores on Jam.
It operates on some work-package p for some nominated
core c and results in either an error ∇ or the work re-
sult, which is deterministic and, thanks to the historical
lookup functionality, can be evaluated by any node which
has a recently finalized chain for up to 24 epochs after the
lookup-anchor block.

Formally:

(167) Ξ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(P,NC)→W

(p, c)↦
⎧⎪⎪⎨⎪⎪⎩

∇ if o /∈ Y
⎧⎩a ▸

▸ pa,o, x ▸
▸ px, s, r⎫⎭ otherwise

where:

o = ΨI(p, c)
s =⎧⎩h, l ▸▸ ∣E(p)∣, u ▸

▸M2([H(x) ∣ x <− C(P211(E(p)))])⎫⎭
r = [ΨR(c, g, s, h,y,px,pa,o) ∣⎧⎩s, c,y, g⎫⎭<− pi]
h =H(p)

And P is the zero-padding function to take an octet
array to some multiple of n in length:

(168) Pn∈N1∶ ∶{
Y→ Yk⋅n

x↦ x ⌢ [0,0, ...]((∣x∣+n−1)mod n)+1...n

We define the binary Merklization function M2 in
equation 280. Note that C represents the erasure-coding
function for the chunks and is defined in appendix H.

Validators are incentivized to distribute each work-
package chunk to each other validator, since they are not
paid for guaranteeing unless a work-report is considered to
be available. Given our work-package p, we should there-
fore send chunk C(E(p))v to each validator whose keys
are κv. In the case of a coming epoch change, they may
also maximize expected reward by distributing to the new
validator set (and thus also send the chunk to (γk)v).

We will see this function utilized in the next sections,
for guaranteeing, auditing and judging.

13.3. Guaranteeing. Guaranteeing work-packages in-
volves the creation and distribution of a corresponding
work-report which requires certain conditions to be met.
Along with the report, a signature demonstrating the val-
idator’s commitment to its correctness is needed. With
two guarantor signatures, the work-report may be dis-
tributed to the forthcoming Jam chain block author in
order to be used in the EG, which leads to a reward for
the guarantors.

We presume that in a public system, validators will be
punished severely if they malfunction and commit to a

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 23

report which does not faithfully represent the result of Ξ
applied on a work-package. Overall, the process is:

(1) Evaluation of the work-package’s authorization,
and cross-referencing against the authorization
pool in the most recent Jam chain state.

(2) Chunking of the work-package report according
to the erasure codec.

(3) Creation and publication of a work-package re-
port.

(4) Distributing the chunks and package as needed to
other nodes.

For any work-package p we are in receipt of, we may
determine the work result, if any, it corresponds to for
the core c that we are assigned to. When Jam chain state
is needed, we always utilize the chain state of the most
recent block.

For any guarantor of index v assigned to core c and a
work-package p, we define the work result r simply as:

(169) r = Ξ(p, c)

Such guarantors may safely create and distribute the
payload (s, v). The component s may be created accord-
ing to equation 132; specifically it is a signature using the
validator’s registered Ed25519 key on a payload l:

(170) l =H(c, r)

To maximize profit, the guarantor should require the
work result meets all expectations which are in place dur-
ing the guarantee extrinsic described in section 11.4. This
includes contextual validity, inclusion of the authorization
in the authorization pool, and ensuring total gas is at most
GA. No doing so does not result in punishment, but will
prevent the block author from including the package and
so reduces rewards.

Advanced nodes may maximize the likelihood that their
reports will be includable on-chain by attempting to pre-
dict the state of the chain at the time that the report will
get to the block author. Naive nodes may simply use the
current chain head when verifying the work-report. To
minimize work done, nodes should make all such evalua-
tions prior to evaluating the ΨR function to calculate the
report’s work results.

Once evaluated as a reasonable work-package to guar-
antee, guarantors should maximize the chance that their
work is not wasted by attempting to form consensus over
the core. To achieve this they should send the work-
package to any other guarantors on the same core which
they do not believe already know of it.

In order to minimize the work for block authors and
thus maximize expected profits, guarantors should at-
tempt to construct their core’s next guarantee extrinsic
from the work-report, core index and set of attestations
including their own and as many others as possible.

In order to minimize the chance of any block authors
disregarding the guarantor for anti-spam measures, guar-
antors should sign an average of no more than two work-
reports per timeslot.

13.4. Availability Assurance. Validators should issue
signed statements, called assurances, when they are in
possession of their corresponding erasure-coding chunk
of the work-package for any corresponding work-reports
which are currently pending availability.

The correct erasure-coding chunk can be determined
through a proof using the commitment to the work-
package chunks Merkle root specified in the work-report.

13.5. Auditing and Judging. The auditing and judg-
ing system is theoretically equivalent to that in Elves,
introduced by stewart2018efficient. For a full security
analysis of the mechanism, see this work. The main differ-
ences are in terminology, whereby the terms backing and
approval there refer to our guaranteeing and auditing, re-
spectively.

13.5.1. Overview. The auditing process involves each
node requiring themselves to fetch, evaluate and issue
judgement on a random but deterministic set of work-
reports from each Jam chain block in which the work-
report becomes available (i.e. from R). Prior to any eval-
uation, a node declares and proves its requirement. At
specific common junctures in time thereafter the set of
work-reports which a node requires itself to evaluate from
each block’s R may be enlarged if any declared intentions
are not matched by a positive judgement in a reasonable
time or in the event of a negative judgement being seen.
These enlargement events are called tranches.

If all declared intentions for a work-report are matched
by a positive judgement at any given juncture, then the
work-report is considered audited. Once all of any given
block’s newly available work-reports are audited, then we
consider the block to be audited. One prerequisite of a
node finalizing a block is for it to view the block as au-
dited. Note that while there will be eventual consensus on
whether a block is audited, there may not be consensus
at the time that the block gets finalized. This does not
affect the crypto-economic guarantees of this system.

In regular operation, no negative judgements will ulti-
mately be found for a work-report, and there will be no
direct consequences of the auditing stage. In the unlikely
event that a negative judgement is found, then one of sev-
eral things happens; if there are still more than 2/3V pos-
itive judgements, then validators issuing negative judge-
ments may receive a punishment for time-wasting. If there
are greater than 1/3V negative judgements, then the block
which includes the work-report is ban-listed. It and all
its descendants are disregarded and may not be built on.
In all cases, once there are enough votes, a judgement ex-
trinsic can be constructed by a block author and placed
on-chain to denote the outcome. See section 10 for details
on this.

All announcements and judgements are published to
all validators along with metadata describing the signed
material. On receipt of sure data, validators are expected
to update their perspective accordingly (later defined as
J and A).

13.5.2. Auditing Specifics. Each validator shall perform
auditing duties on each valid block received. Since we are
entering off-chain logic, and we cannot assume consensus,
we henceforth now consider ourselves a specific validator
of index v and assume ourselves focused on some block
B with other terms corresponding, so σ′ is said block’s
posterior state, H is its header &c. Practically, all con-
siderations must be replicated for all blocks and multiple
blocks’ considerations may be underway simultaneously.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 24

We define the sequence of work-reports which we may
be required to audit as Q, a sequence of length equal to
the number of cores, which functions as a mapping of core
index to a work-report pending which has just become
available, or ∅ if no report became available on the core.
Formally:

Q ∈ ⟦W?⟧C(171)

Q ≡ [
ρ[c]w if ρ[c]w ∈R
∅ otherwise } ∣ c <− NC](172)

We define our initial audit tranche in terms of a verifi-
able random quantity s0 created specifically for it:

s0 ∈ F[]κ[v]b⟨XU ⌢ Y(Hv)⟩(173)
XU = $jam_audit(174)

We may then define a0 as the non-empty items to audit
through a verifiably random selection of ten cores:

a0 = {⎧⎩c,w⎫⎭∣⎧⎩c,w⎫⎭∈ p⋅⋅⋅+10,w ≠ ∅}(175)
where p = F([⎧⎩c,Qc

⎫⎭∣ c ∈ NC], r)(176)
and r = Y(s0)(177)

Every A = 8 seconds following a new time slot, a new
tranche begins, and we may determine that additional
cores warrant an audit from us. Such items are defined
as an where n is the current tranche. Formally:

(178) let n = ⌊T − P ⋅ τ ′

A
⌋

New tranches may contain items from Q stemming
from one of two reasons: either a negative judgement has
been received; or the number of judgements from the pre-
vious tranche is less than the number of announcements
from said tranche. In the first case, the validator is al-
ways required to issue a judgement on the work-report.
In the second case, a new special-purpose vrf must be
constructed to determine if an audit and judgement is
warranted from us.

In all cases, we publish a signed statement of which
of the cores we believe we are required to audit (an an-
nouncement) together with evidence of the vrf signature
to select them and the other validators’ announcements
from the previous tranche unmatched with a judgement in
order that all other validators are capable of verifying the
announcement. Publication of an announcement should be
taken as a contract to complete the audit regardless of any
future information.

Formally, for each tranche n we ensure the announce-
ment statement is published and distributed to all other
validators along with our validator index v, evidence sn
and all signed data. Validator’s announcement statements
must be in the set:

Eκ[v]e⟨XI n ⌢ E([E2(c) ⌢H(w) ∣⎧⎩c,w⎫⎭∈ a0])⟩(179)
XI = $jam_announce(180)

We define An as our perception of which validator is
required to audit each of the work-reports (identified by
their associated core) at tranche n. This comes from each
other validators’ announcements (defined above). It can-
not be correctly evaluated until n is current. We have
absolute knowledge about our own audit requirements.

An ∶W→ ℘(NV)(181)
∀(c,w) ∈ a0 ∶ v ∈ q0(w)(182)

We further define J⊺ and J� to be the validator indices
who we know to have made respectively, positive and neg-
ative, judgements mapped from each work-report’s core.
We don’t care from which tranche a judgement is made.

J{�,⊺} ∶W→ ℘(NV)(183)

We are able to define an for tranches beyond the first
on the basis of the number of validators who we know are
required to conduct an audit yet from whom we have not
yet seen a judgement. It is possible that the late arrival
of information alters an and nodes should reevaluate and
act accordingly should this happen.

We can thus define an beyond the initial tranche
through a new vrf which acts upon the set of no-show
validators.

∀n > 0 ∶

sn(w) ∈ F[]κ[v]b⟨XU ⌢ Y(Hv) ⌢H(w) n⟩(184)

an ≡ {w ∈Q ∣ F
256V
Y(sn(w))0 < ∣An−1(w) ∖ J⊺(w)∣}(185)

We define our bias factor F = 2, which is the expected
number of validators which will be required to issue a
judgement for a work-report given a single no-show in
the tranche before. Modeling by stewart2018efficient
shows that this is optimal.

Later audits must be announced in a similar fashion
to the first. If audit requirements lesson on the receipt
of new information (i.e. a positive judgement being re-
turned for a previous no-show), then any audits already
announced are completed and judgements published. If
audit requirements raise on the receipt of new informa-
tion (i.e. an additional announcement being found with-
out an accompanying judgement), then we announce the
additional audit(s) we will undertake.

As n increases with the passage of time an becomes
known and defines our auditing responsibilities. We must
attempt to reconstruct all work-packages corresponding
to each work-report we must audit. This may be done
through requesting erasure-coded chunks from one-third of
the validators. It may also be short-cutted through asking
a third-party (e.g. an original guarantor) for a reverse-hash
lookup using the work-package hash in the work-report’s
package specification.

Thus, for any such work-report w we are assured we
will be able to fetch some candidate work-package encod-
ing F (w) which comes either from reconstructing erasure-
coded chunks verified through the erasure coding’s Merkle
root, or alternatively from the preimage of the work-
package hash. We decode this candidate blob into a work-
package and attempt to reproduce the report on the core
to give en, a mapping from cores to evaluations:

(186)
∀(c,w) ∈ an ∶

en(w)⇔
⎧⎪⎪⎨⎪⎪⎩

w = Ξ(p, c) if ∃p ∈ P ∶ E(p) = F (w)
� otherwise

Note that a failure to decode implies an invalid work-
report.

From this mapping the validator issues a set of judge-
ments jn:

jn = {Sκ[v]e(Xe(w) ⌢H(w)) ∣ (c,w) ∈ an}(187)

All judgements j∗ should be published to other valida-
tors in order that they build their view of J and in the

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 25

case of a negative judgement arising, can form an extrinsic
for EJ .

We consider a work-report as audited under two cir-
cumstances. Either, when it has no negative judgements
and there exists some tranche in which we see a positive
judgement from all validators who we believe are required
to audit it; or when we see positive judgements for it from
greater than two-thirds of the validator set.

U(w)⇔⋁{
J�(w) = ∅ ∧ ∃n ∶ An(w) ⊂ J⊺(w)
∣J⊺(w)∣ > 2/3V

(188)

Our block B may be considered audited, a condition
denoted U, when all the work-reports which were made
available are considered audited. Formally:

U⇔ ∀w ∈R ∶ U(w)(189)

For any block we must judge it to be audited (i.e.
U = ⊺) before we vote for the block to be finalized in
Grandpa. See section 15 for more information here.

Furthermore, we pointedly disregard chains which in-
clude the accumulation of a report which we know at least
1/3 of validators judge as being invalid. Any chains includ-
ing such a block are not eligible for authoring on. The best
block, i.e. that on which we build new blocks, is defined as
the chain with the most regular Safrole blocks which does
not contain any such disregarded block. Implementation-
wise, this may require reversion to an earlier head or al-
ternative fork.

As a block author, we include a judgement extrinsic
which collects judgement signatures together and reports
them on-chain. In the case of a non-valid judgement (i.e.
one which is not two-thirds-plus-one of judgements con-
firming validity) then this extrinsic will be introduced in a
block in which accumulation of the non-valid work-report
is about to take place. The non-valid judgement extrin-
sic removes it from the pending work-reports, ρ. Refer to
section 10 for more details on this.

14. Beefy Distribution

For each finalized block B which a validator imports,
said validator shall make a bls signature on the bls12-
381 curve, as defined by bls12-381, affirming the Keccak
hash of the block’s most recent Beefy mmr. This should
be published and distributed freely, along with the signed
material. These signatures may be aggregated in order to
provide concise proofs of finality to third-party systems.
The signing and aggregation mechanism is defined fully
by cryptoeprint:2022/1611.

Formally, let Fv be the signed commitment of validator
index v which will be published:

Fv ≡ Sκv(XB ⌢HK(EM(last(β)b]))(190)
XB = $jam_beefy(191)

15. Grandpa and the Best Chain

Nodes take part in the Grandpa protocol as defined
by stewart2020grandpa.

We define the latest finalized block as B♮. All associ-
ated terms concerning block and state are similarly super-
scripted. We consider the best block, B♭ to be that which
is drawn from the set of acceptable blocks of the following
criteria:

● Has the finalized block as an ancestor.

● Contains no unfinalized blocks where we see an
equivocation (two valid blocks at the same times-
lot).

● Is considered audited.

Formally:

A(H♭) ∋H♮(192)

U♭ ≡ ⊺(193)

/∃HA,HB ∶⋀

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HA ≠HB

HA
T =HB

T

HA ∈A(H♭)

HA /∈A(H♮)

(194)

Of these acceptable blocks, that which contains the
most ancestor blocks whose author used a seal-key ticket,
rather than a fallback key should be selected as the best
head, and thus the chain on which the participant should
make Grandpa votes.

Formally, we aim to select B♭ to maximize the value m
where:

(195) m = ∑
HA∈A♭

TA

16. Ratings and Rewards

The Jam chain does not explicitly issue rewards—we
leave this as a job to be done by the staking subsystem
(a system parachain—hosted without fees—in the current
imagining of a public Jam network). However, much as
with validator punishment information, it is important for
the Jam chain to facilitate the arrival of performance in-
formation in to the staking subsystem so that it may be
acted upon.

Such performance information cannot directly cover all
aspects of validator activity; whereas block production,
guarantor reports and availability assurance can easily be
tracked on-chain, Grandpa, Beefy and auditing activity
cannot. In the latter case, this is instead tracked with val-
idator voting activity: validators vote on their impression
of each other’s efforts and a median may be accepted as
the truth for any given validator. With an assumption of
50% honest validators, this gives an adequate means of
oraclizing this information.

17. Discussion

17.1. Technical Characteristics. In total, with our
stated target of 1,023 validators and three validators per
core, along with requiring a mean of ten audits per val-
idator per timeslot, and thus 30 audits per work-report,
Jam is capable of trustlessly processing and integrating
341 work-packages per timeslot.

We assume node hardware is a modern 16 core cpu
with 64gb ram, 1tb secondary storage and 0.5gbe net-
working.

Our performance models assume a rough split of cpu
time as follows:

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 26

Proportion
Audits 10/16
Merklization 1/16
Block execution 2/16
Grandpa and Beefy 1/16
Erasure coding 1/16
Networking & misc 1/16

Estimates for network bandwidth requirements are as
follows:

Upload Download
mb/s mb/s

Guaranteeing 30 40
Assuring 12 8
Auditing 200 200
Block publication 42 42
Grandpa and Beefy 4 4
Total 288 294

Thus, a connection able to sustain 500mb/s should
leave a sufficient margin of error and headroom to serve
other validators as well as some public connections, though
the burstiness of block publication would imply validators
are best to ensure that peak bandwidth is higher.

Under these conditions, we would expect an overall
network-provided data availability capacity of 2pb, with
each node dedicating at most 6tb to availability storage.

Estimates for memory usage are as follows:

gb
Auditing 20 2 × 10 pvm instances
Block execution 2 1 pvm instance
State cache 40
Misc 2
Total 64

As a rough guide, each parachain has an average foot-
print of around 2mb in the Polkadot Relay chain; a 40gb
state would allow 20,000 parachains’ information to be
retained in state.

What might be called the “virtual hardware” of a Jam
core is essentially a regular cpu core executing at some-
where between 25% and 50% of regular speed for the
whole six-second portion and which may draw and pro-
vide 2.5mb/s average in general-purpose i/o and utilize up
to 2gb in ram. The i/o includes any trustless reads from
the Jam chain state, albeit in the recent past. This virtual
hardware also provides unlimited reads from a semi-static
preimage-lookup database.

Each work-package may occupy this hardware and exe-
cute arbitrary code on it in six-second segments to create
some result of at most 90kb. This work result is then
entitled to 10ms on the same machine, this time with no
“external” i/o beyond said result, but instead with full
and immediate access to the Jam chain state and may
alter the service(s) to which the results belong.

17.2. Illustrating Performance. In terms of pure pro-
cessing power, the Jam machine architecture can deliver
extremely high levels of homogeneous trustless computa-
tion. However, the core model of Jam is a classic paral-
lelized compute architecture, and for solutions to be able
to utilize the architecture well they must be designed with

it in mind to some extent. Accordingly, until such use-
cases appear on Jam with similar semantics to existing
ones, it is very difficult to make direct comparisons to ex-
isting systems. That said, if we indulge ourselves with
some assumptions then we can make some crude compar-
isons.

17.2.1. Comparison to Polkadot. Pre-asynchronous back-
ing, Polkadot validates around 50 parachains, each one
utilizing approximately 250ms of native computation (i.e.
half a second of Wasm execution time at around a 50%
overhead) and 5mb of i/o for every twelve seconds of
real time which passes. This corresponds to an aggregate
compute performance of around parity with a native cpu
core and a total 24-hour distributed availability of around
20mb/s. Accumulation is beyond Polkadot’s capabilities
and so not comparable.

Post asynchronous-backing and estimating that Polka-
dot is at present capable of validating at most 80
parachains each doing one second of native computation
in every six, then the aggregate performance is increased
to around 13x native cpu and the distributed availability
increased to around 67mb/s.

For comparison, in our basic models, Jam should be
capable of attaining around 85x the computation load of
a single native cpu core and a distributed availability of
852mb/s.

17.2.2. Simple Transfers. We might also attempt to
model a simple transactions-per-second amount, with each
transaction requiring a signature verification and the mod-
ification of two account balances. Once again, until there
are clear designs for precisely how this would work we must
make some assumptions. Our most naive model would be
to use the Jam cores (i.e. refinement) simply for trans-
action verification and account lookups. The Jam chain
would then hold and alter the balances in its state. This
is unlikely to give great performance since almost all the
needed i/o would be synchronous, but it can serve as a
basis.

A 15mb work-package can hold around 125k transac-
tions at 128 bytes per transaction. However, a 90kb work-
result could only encode around 11k account updates when
each update is given as a pair of a 4 byte account index
and 4 byte balance, resulting in a limit of 5.5k transac-
tions per package, or 312k tps in total. It is possible that
the eight bytes could typically be compressed by a byte
or two, increasing maximum throughput a little. Our ex-
pectations are that state updates, with highly parallelized
Merklization, can be done at between 500k and 1 million
reads/write per second, implying around 250k-350k tps,
depending on which turns out to be the bottleneck.

A more sophisticated model would be to use the Jam
cores for balance updates as well as transaction verifica-
tion. We would have to assume that state and the trans-
actions which operate on them can be partitioned between
work-packages with some degree of efficiency, and that the
15mb of the work-package would be split between transac-
tion data and state witness data. Our basic models predict
that a 4bn 32-bit account system paginated into 210 ac-
counts/page and 128 bytes per transaction could, assum-
ing only around 1% of oraclized accounts were useful, av-
erage upwards of 1.7mtps depending on partitioning and
usage characteristics. Partitioning could be done with a

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 27

fixed fragmentation (essentially sharding state), a rotating
partition pattern or a dynamic partitioning (which would
require specialized sequencing).

Interestingly, we expect neither model to be bottle-
necked in computation, meaning that transactions could
be substantially more sophisticated, perhaps with more
flexible cryptography or smart contract functionality,
without a significant impact on performance.

17.2.3. Computation Throughput. The tps metric does
not lend itself well to measuring distributed systems’ com-
putational performance, so we now turn to another slightly
more compute-focussed benchmark: the evm. The basic
YP Ethereum network, now approaching a decade old, is
probably the best known example of general purpose de-
centralized computation and makes for a reasonable yard-
stick. It is able to sustain a computation and i/o rate of
1.25M gas/sec, with a peak throughput of twice that. The
evm gas metric was designed to be a time-proportional
metric for predicting and constraining program execution.
Attempting to determine a concrete comparison to pvm
throughput is non-trivial and necessarily opinionated ow-
ing to the disparity between the two platforms including
word size, endianness and stack/register architecture and
memory model. However, we will attempt to determine a
reasonable range of values.

Evm gas does not directly translate into native exe-
cution as it also combines state reads and writes as well
as transaction input data, implying it is able to process
some combination of up to 595 storage reads, 57 storage
writes and 1.25M gas as well as 78kb input data in each
second, trading one against the other.12 We cannot find
any analysis of the typical breakdown between storage i/o
and pure computation, so to make a very conservative es-
timate, we assume it does all four. In reality, we would
expect it to be able to do on average 1/4 of each.

Our experiments13 show that on modern, high-end con-
sumer hardware with a modern evm implementation, we
can expect somewhere between 180 and 500 gas/µs in
throughput on pure-compute workloads (we specifically
utilized Odd-Product, Triangle-Number and several im-
plementations of the Fibonacci calculation). To make a
conservative comparison to pvm, we propose transcom-
pilation of the evm code into pvm code and then re-
execution of it under the Polkavm prototype.14

To help estimate a reasonable lower-bound of evm
gas/µs, e.g. for workloads which are more memory and
i/o intensive, we look toward real-world permissionless
deployments of the evm and see that the Moonbeam
network, after correcting for the slowdown of execut-
ing within the recompiled WebAssembly platform on the
somewhat conservative Polkadot hardware platform, im-
plies a throughput of around 100 gas/µs. We therefore

assert that in terms of computation, 1µs evm gas approx-
imates to around 100-500 gas on modern high-end con-
sumer hardware.15

Benchmarking and regression tests show that for the
iterative Fibonacci calculation, the prototype pvm engine
has a fixed preprocessing overhead of around 5ns/byte of
program code and a marginal factor of 1.6%, implying an
asymptotic speedup of around 63x. For machine code 1mb
in size expected to take of the order of a second to com-
pute, the compilation cost becomes only 0.5% of the over-
all time. The pattern is reproducible with other bench-
marks.16 For code not inherently suited to the 256-bit
evm isa, we would expect substantially improved relative
execution times on pvm.

Even if we allow for preprocessing to take up to the
same component within execution as the marginal cost
(owing to, for example, an extremely large but short-
running program) and for the pvm metering to imply a
safety overhead of 2x to execution speeds, then we can
expect a Jam core to be able to process the equivalent of
around 1,500 evm gas/µs. We might reason a typical case,
targeted to pvm ratehr than via an evm representation,
to be in excess of ten times that.

Jam cores are each capable of 2.5mb/s bandwidth,
which must include any state i/o and data which must be
newly introduced (e.g. transactions). While writes come
at comparatively little cost to the core, only requiring
hashing to determine an eventual updated Merkle root,
reads must be witnessed, with each one costing around
640 bytes of witness conservatively assuming a one-million
entry binary Merkle trie. This would result in a maxi-
mum of a little under 4k reads/second/core, with the ex-
act amount dependent upon how much of the bandwidth
is used for newly introduced input data.

Aggregating everything across Jam, excepting accu-
mulation which could add further throughput, numbers
can be multiplied by 341 (with the caveat that each one’s
computation cannot interfere with any of the others’ ex-
cept through state oraclization and accumulation). Unlike
for roll-up chain designs such as Polkadot and Ethereum,
there is no need to have persistently fragmented state.
Smart-contract state may be held in a coherent format on
the Jam chain so long as any updates are made through
the 15kb/core/sec work results, which would need to con-
tain only the hashes of the altered contracts’ state roots.

Under our modelling assumptions, we can therefore
summarize:

Eth. L1 Jam Core Jam

Compute (evm gas/µs) 1.25† 1.5-15k 0.5-5m
State writes (s−1) 57† n/a n/a
State reads (s−1) 595† 4k‡ 1.4m‡

Input data (s−1) 78kb† 2.5mb‡ 852mb‡

12The latest “proto-danksharding” changes allow it to accept 87.3kb/s in committed-to data though this is not directly available within
state, so we exclude it from this illustration, though including it with the input data would change the results little.

13This is detailed at https://hackmd.io/@XXX9CM1uSSCWVNFRYaSB5g/HJarTUhJA and intended to be updated as we get more information.
14It is conservative since we don’t take into account that the source code was originally compiled into evm code and thus the pvm

machine code will replicate architectural artifacts and thus is very likely to be pessimistic. As an example, all arithmetic operations in evm
are 256-bit and 32-bit native pvm is being forced to honor this even if the source code only actually required 32-bit values.

15We speculate that the substantial range could possibly be caused in part by the major architectural differences between the evm isa
typical modern hardware.

16As an example, the odd-product benchmark, another pure-compute arithmetic task, execution takes 58s on evm, and 1.04s within our
pvm prototype, including all preprocessing.

https://hackmd.io/@XXX9CM1uSSCWVNFRYaSB5g/HJarTUhJA

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 28

What we can see is that Jam’s overall predicted per-
formance profile implies it could be comparable to thou-
sands or even millions of that of the basic Ethereum L1
chain. The large factor here is essentially due to three
things: spacial parallelism, as Jam can host several hun-
dred cores under its security apparatus; temporal paral-
lelism, as Jam targets continuous execution for its cores
and pipelines much of the computation between blocks to
ensure a constant, optimal workload; and platform opti-
mization by using a vm and gas model which closely fits
modern hardware architectures.

It must however be understood that this is a provi-
sional and crude estimation only. It is included for only
the purpose of expressing Jam’s performance in tangi-
ble terms and is not intended as a means of comparing
to a “full-blown” Ethereum/L2-ecosystem combination.
Specifically, it does not take into account:

● that these numbers are based on real performance
of Ethereum and performance modelling of Jam
(though our models are based on real-world per-
formance of the components);

● any L2 scaling which may be possible with either
Jam or Ethereum;

● the state partitioning which uses of Jam would
imply;

● the as-yet unfixed gas model for the pvm;
● that pvm/evm comparisons are necessarily impre-

cise;
● (†) all figures for Ethereum L1 are drawn from

the same resource: on average each figure will be
only 1/4 of this maximum.

● (‡) the state reads and input data figures for Jam
are drawn from the same resource: on average
each figure will be only 1/2 of this maximum.

We leave it as further work for an empirical analysis of
performance and an analysis and comparison between Jam
and the aggregate of a hypothetical Ethereum ecosystem
which included some maximal amount of L2 deployments
together with full Dank-sharding and any other additional
consensus elements which they would require. This, how-
ever, is out of scope for the present work.

18. Conclusion

We have introduced a novel computation model which
is able to make use of pre-existing crypto-economic mech-
anisms in order to deliver major improvements in scala-
bility without causing persistent state-fragmentation and
thus sacrificing overall cohesion. We call this overall pat-
tern collect-refine-join-accumulate. Furthermore, we have
formally defined the on-chain portion of this logic, essen-
tially the join-accumulate portion. We call this protocol
the Jam chain.

We argue that the model of Jam provides a novel “sweet
spot”, allowing for massive amounts of computation to
be done in secure, resilient consensus compared to fully-
synchronous models, and yet still have strict guarantees
about both timing and integration of the computation
into some singleton state machine unlike persistently frag-
mented models.

18.1. Further Work. While we are able to estimate the-
oretical computation possible given some basic assump-
tions and even make broad comparisons to existing sys-
tems, practical numbers are invaluable. We believe the

model warrants further empirical research in order to bet-
ter understand how these theoretical limits translate into
real-world performance. We feel a proper cost analysis
and comparison to pre-existing protocols would also be an
excellent topic for further work.

We can be reasonably confident that the design of Jam
allows it to host a service under which Polkadot parachains
could be validated, however further prototyping work is
needed to understand the possible throughput which a
pvm-powered metering system could support. We leave
such a report as further work. Likewise, we have also
intentionally omitted details of higher-level protocol ele-
ments including cryptocurrency, coretime sales, staking
and regular smart-contract functionality.

A number of potential alterations to the protocol de-
scribed here are being considered in order to make prac-
tical utilization of the protocol easier. These include:

● Synchronous calls between services in accumulate.
● Restrictions on the transfer function in order to

allow for substantial parallelism over accumula-
tion.

● The possibility of reserving substantial additional
computation capacity during accumulate under
certain conditions.

● Introducing Merklization into the Work Package
format in order to obviate the need to have the
whole package downloaded in order to evaluate
its authorization.

The networking protocol is also left intentionally un-
defined at this stage and its description must be done in
a follow-up proposal.

Validator performance is not presently tracked on-
chain. We do expect this to be tracked on-chain in the
final revision of the Jam protocol, but its specific format
is not yet certain and it is therefore omitted at present.

19. Acknowledgements

Much of this present work is based in large part on the
work of others. The Web3 Foundation research team and
in particular Alistair Stewart and Jeff Burdges are respon-
sible for Elves, the security apparatus of Polkadot which
enables the possibility of in-core computation for Jam.
The same team is responsible for Sassafras, Grandpa and
Beefy.

Safrole is a mild simplification of Sassafras and was
made under the careful review of Davide Gallosi and Al-
istair Stewart.

The original CoreJam rfc was refined under the re-
view of Bastian Köcher and Robert Habermeier and most
of the key elements of that proposal have made their way
into the present work.

The pvm is a formalization of a partially simplified
PolkaVM software prototype, developed by Jan Bujak.
Cyrill Leutwiler contributed to the empirical analysis of
the pvm reported in the present work.

The PolkaJam team and in particular Arkadiy
Paronyan, Emeric Chevalier and Dave Emmet have been
instrumental in the design of the lower-level aspects of the
Jam protocol, especially concerning Merklization and i/o.

And, of course, thanks to the awesome Lemon Jelly,
a.k.a. Fred Deakin and Nick Franglen, for three of the
most beautiful albums ever produced, the cover art of the
first of which was inspiration for this paper’s background
art.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 29

Appendix A. Polka Virtual Machine

A.1. Basic Definition. We declare the general pvm function Ψ. We assume a single-step invocation function define Ψ1

and define the full pvm recursively as a sequence of such mutations up until the single-step mutation results in a halting
condition.

(196) Ψ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Y,NR,NG, ⟦NR⟧13,M)→ ({∎,☇,∞} ∪ {

F} ×NR ∪ {h̵} ×NR,NR,ZG, ⟦NR⟧13,M)

(p, ı, ξ, ω, µ)↦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ψ(p, ı′, ξ′, ω′, µ′) if ζ = ▸
(∞, ı′, ξ′, ω′, µ′) if ξ′ < 0
(ζ, ı′, ξ′, ω′, µ′) otherwise

where (ζ, ı′, ξ′, ω′, µ′) = Ψ1(c, j, ı, ξ, ω, µ)
and p = E(↕j,c)

If the latter condition cannot be satisfied, then (☇, ı, ξ, ω, µ) is the result.
The pvm exit reason r ∈ {∎,☇,∞}∪{ F

, h̵}×NR may be one of regular halt ∎, panic ☇ or out-of-gas ∞, or alternatively a
host-call h̵, in which the host-call identifier is associated, or page-fault Fin which case the address into ram is associated.

A.2. Instructions, Basic-Blocks and the Jump Table. The program blob p is split into a series of octets which make
up the instruction data c and the dynamic jump table, j. The former implies an instruction sequence, and by extension
a basic-block sequence, itself a sequence of indices of the instructions which follow a block-termination instruction.

The dynamic jump table builds on this and is a sequence containing, in order, every basic-block index to which the
instruction counter may be altered if computed dynamically.

Most instructions are composed of multiple octets. Since the pvm counts instructions in unit terms (rather than octet
terms) it is convenient to define the sequence of instruction blobs which these octets represent. Given our instructions
blob c, we make an equivalence for our instruction-blob sequence ε. To define this we presume a function ℓ(N28) which
provides the length of the instruction whose opcode is given as parameter according to the ℓ value in the tables of section
A.4. Formally:

ε ≡ [I(0), I(1), . . . I(m − 1)](197)
where I(n) ≡ co⋅⋅⋅+ℓ(co) , m =min(n ∈ N ∶ o = ∣c∣) , o = ∑

m∈Nn

∣I(m,c)∣(198)

A.2.1. Basic Blocks and Termination Instructions. Instructions of the following opcodes are considered basic-block
termination instructions; other than trap & fallthrough, they corresond to instructions which may define the instruction-
counter to be something other than one more than its prior value:

● Trap and fallthrough: trap , fallthrough
● Jumps: jump , jump_ind
● Calls: call , call_ind
● Branches: branch_eq , branch_ne , branch_ge_u , branch_ge_s , branch_lt_u , branch_lt_s , branch_eq_imm ,

branch_ne_imm
● Immediate branches: branch_lt_u_imm , branch_lt_s_imm , branch_le_u_imm , branch_le_s_imm , branch_ge_u_imm ,

branch_ge_s_imm , branch_gt_u_imm , branch_gt_s_imm
We denote this set, as opcode indices rather than names, as T . We define the instruction indices denoting the

beginning of basic-blocks as ϖ:
(199) ϖ ≡ [0] ⌢ [n + 1 ∣ n <− N∣ε∣ ∧ εn ∈ T]

We require that the dynamic jump-table only contain the indices of basic-blocks and that they include the indices for
all basic-blocks immediately following a call (6) or call_ind (42) instruction:

j ⊂ N∣ϖ∣(200)
∀n ∈ N∣ε∣ ∶ (εn)0 ∈ {6,42} Ô⇒ b ∈ j where ϖb = n + 1(201)

As with other hard requirements, if the former is not satisfied, then posterior machine state is equivalent to prior and
the exit reason of the pvm function is ☇.

A.3. Single-Step State Transition. We must now define the single-step pvm state-transition function Ψ1:

(202) Ψ1∶
⎧⎪⎪⎨⎪⎪⎩

(Y, ⟦NR⟧,NR,NG, ⟦NR⟧13,M)→ ({☇,∎,▸} ∪ {

F

, h̵} ×NR,ZG, ⟦NR⟧13,M)
(c, j, ı, ξ, ω, µ)↦ (ζ, ı′, ξ′, ω′, µ′)

We define ζ together with the posterior values (denoted as prime) of each of the items of the machine state as being
in accordance with the table below.

In general, when transitioning machine state for an instruction a number of conditions hold true and instructions are
defined essentially by their exceptions to these rules. Specifically, the machine does not halt, the instruction counter
increments by one, the gas remaining is reduced by the amount corresponding to the instruction type and ram & registers
are unchanged. Formally:
(203) ζ = ▸, ı′ = ı + 1, ξ′ = ξ − ξ∆, ω′ = ω, µ′ = µ except as indicated

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 30

Where ram must be inspected and yet access is not possible, then machine state is unchanged, and the exit reason is
a fault with the lowest address to be read which is inaccessible. More formally, let a be the set of indices in to which µ
must be subscripted in order to calculate the result of Ψ1. If a /⊂ Vµ then let ζ = F×min(a ∖ Vµ).

Similarly, where ram must be mutated and yet mutable access is not possible, then machine state is unchanged, and
the exit reason is a fault with the lowest address to be read which is inaccessible. More formally, let a be the set of
indices in to which µ′ must be subscripted in order to calculate the result of Ψ1. If a /⊂ V∗µ then let ζ = F×min(a ∖ V∗µ).

We define signed/unsigned transitions for various octet widths:

Zn∈N∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N28n → Z−28n−1 ∶28n−1

a↦
⎧⎪⎪⎨⎪⎪⎩

a if a < 28n−1

a − 28n otherwise
(204)

Z−1n∈N∶
⎧⎪⎪⎨⎪⎪⎩

Z−28n−1 ∶28n−1 → N28n

a↦ (28n + a)mod 28n
(205)

Bn∈N∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

N28n → B8n

x↦ y ∶ ∀i ∈ N28n ∶ y[i]⇔ ⌊ x
2i
⌋mod 2

(206)

B−1n∈N∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

B8n → N28n

x↦ y ∶ ∑
i∈N

28n

xi ⋅ 2i(207)

Static jumps, calls and branches must be to valid items in the jump table and if they are not, then a panic occurs:

(208) branch(b,C) Ô⇒ (ζ, ı′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(☇, ı) if b ≥ ∣ϖ∣
(▸, ı) otherwise if ¬C
(▸,ϖb) otherwise

Calls and jumps whose next instruction is dynamically computed meanwhile must use an address which may be
indexed into the jump-table j. Through a quirk of tooling17, we define the dynamic address required by the instructions
as the jump table index incremented by one and then multiplied by our jump alignment factor ZA = 4:

(209) djump(a) Ô⇒ (ζ, ı′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(∎, ı) if a = 232 − 216

(☇, ı) otherwise if a = 0 ∨ a > ∣j∣ ⋅ ZA ∨ amod ZA ≠ 0
(▸,ϖj(a/ZA)−1

) otherwise

A.4. Instruction Tables.

A.4.1. Instructions without Arguments.
(210) ℓ = 1

(εı)0 Name ξ∆ Mutations

0 trap 0 ζ = ∎
17 fallthrough 0

A.4.2. Instructions with Arguments of One Register & One Immediate.
(211) ℓ = 2 + x, ωA ≡ ω(εı)1 , ω′A ≡ ω′(εı)1 , ∃x, νX ∈ NR ∶ (εı)2⋅⋅⋅+x = E(νX)

In the case that the above condition is not met, then the instruction is considered invalid, and it results in a panic;
ζ = ☇.

We denote the next jump index as jN , as always equivalent to the lowest value in the jump table which is greater than
the instruction counter. In the case of an instruction where this value is utilized when undefined then the instruction
causes no mutations to machine state but results in an exit reason of panic ☇.
(212) R(ı) ≡ ZA(1 + j) where ϖjj = ı + 1

(εı)0 Name ξ∆ Mutations

6 call 0 branch(νX ,⊺) , ω′A = R(ı)

19 jump_ind 0 djump((ωA + νX)mod 232)
4 load_imm 0 ω′A = νX

17The popular code generation backend llvm requires and assumes in its code generation that dynamically computed jump destinations
always have a certain memory alignment. Since at present we depend on this for our tooling, we must acquiesce to its assumptions.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 31

(εı)0 Name ξ∆ Mutations

60 load_u8 0 ω′A = µνX

74 load_i8 0 ω′A = Z−14 (Z1(µνX))

76 load_u16 0 ω′A = E−12 (µ
↺
νX ⋅⋅⋅+2)

66 load_i16 0 ω′A = Z−14 (Z2(E−12 (µ
↺
νX ⋅⋅⋅+2)))

10 load_u32 0 ω′A = E−14 (µ
↺
νX ⋅⋅⋅+4)

71 store_u8 0 µ′
↺
νX
= ωA mod 28

69 store_u16 0 µ′
↺
νX ⋅⋅⋅+2 = E2(ωA mod 216)

22 store_u32 0 µ′
↺
νX ⋅⋅⋅+4 = E4(ωA)

A.4.3. Instructions with Arguments of a Register & Two Immediates.
(213) ℓ = 2 + x + y, ωA ≡ ω(εı)1 , ω′A ≡ ω′(εı)1 , ∃x, y, νX , νY ∈ NR ∶ (εı)2⋅⋅⋅+x = E(νX) ∧ (εı)2+x⋅⋅⋅+y = E(νY)

In the case that the above condition is not met, then the instruction is considered invalid, and it results in a panic;
ζ = ☇.

(εı)0 Name ξ∆ Mutations

7 branch_eq_imm 0 branch(νY , ωA = νX)
15 branch_ne_imm 0 branch(νY , ωA ≠ νX)
44 branch_lt_u_imm 0 branch(νY , ωA < νX)
59 branch_le_u_imm 0 branch(νY , ωA ≤ νX)
52 branch_ge_u_imm 0 branch(νY , ωA ≥ νX)
50 branch_gt_u_imm 0 branch(νY , ωA > νX)
32 branch_lt_s_imm 0 branch(νY ,Z4(ωA) < Z4(νX))
46 branch_le_s_imm 0 branch(νY ,Z4(ωA) ≤ Z4(νX))
45 branch_ge_s_imm 0 branch(νY ,Z4(ωA) ≥ Z4(νX))
53 branch_gt_s_imm 0 branch(νY ,Z4(ωA) > Z4(νX))

26 store_imm_ind_u8 0 µ′
↺
ωA+νX = νY mod 28

54 store_imm_ind_u16 0 µ′
↺
ωA+νX = E2(νY mod 216)

13 store_imm_ind_u32 0 µ′
↺
ωA+νX = E4(νY)

A.4.4. Instructions with Arguments of Two Registers & One Immediate.
(214) ℓ = 2 + x, ωA ≡ ωa, ω′A ≡ ω′a, ωB ≡ ωb, ω′B ≡ ω′b, a R b = (εı)1/16, ∃x, νX ∈ NR ∶ (εı)2⋅⋅⋅+x = E(νX)

In the case that the above condition is not met, then the instruction is considered invalid, and it results in a panic;
ζ = ☇.

(εı)0 Name ξ∆ Mutations

16 store_ind_u8 0 µ′
↺
ωB+νX = ωA mod 28

29 store_ind_u16 0 µ′
↺
ωB+νX = E2(ωA mod 216)

3 store_ind_u32 0 µ′
↺
ωB+νX = E4(ωA)

11 load_ind_u8 0 ω′A = µωB+νX

21 load_ind_i8 0 ω′A = Z−14 (Z1(µωB+νX))

37 load_ind_u16 0 ω′A = E−12 (µ
↺
ωB+νX ⋅⋅⋅+2)

33 load_ind_i16 0 ω′A = Z−14 (Z2(E−12 (µ
↺
ωB+νX ⋅⋅⋅+2)))

1 load_ind_u32 0 ω′A = E−14 (µ
↺
ωB+νX ⋅⋅⋅+4)

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 32

(εı)0 Name ξ∆ Mutations

42 call_ind 0 djump((ωB + νX)mod 232) , ω′A = R(ı)

2 add_imm 0 ω′B = (ωA + νX)mod 232

18 and_imm 0 ∀i ∈ N32 ∶ B4(ω′B)i = B4(ωA)i ∧B4(νX)i
31 xor_imm 0 ∀i ∈ N32 ∶ B4(ω′B)i = B4(ωA)i ⊕B4(νX)i
49 or_imm 0 ∀i ∈ N32 ∶ B4(ω′B)i = B4(ωA)i ∨B4(νX)i
35 mul_imm 0 ω′B = (ωA ⋅ νX)mod 232

65 mul_upper_s_s_imm 0 ω′B = Z−14 (⌊(Z4(ωA) ⋅Z4(νX)) ÷ 232⌋)

63 mul_upper_u_u_imm 0 ω′B = ⌊(ωA ⋅ νX) ÷ 232⌋

27 set_lt_u_imm 0 ω′B = ωA < νX
56 set_lt_s_imm 0 ω′B = Z4(ωA) < Z4(νX)

9 shlo_l_imm 0 ω′B = (ωA ⋅ 2νX mod 32)mod 232

14 shlo_r_imm 0 ω′B = ⌊ωA ÷ 2νX mod 32⌋

25 shar_r_imm 0 ω′B = Z−14 (⌊Z4(ωA) ÷ 2νX mod 32⌋)

40 neg_add_imm 0 ω′B = (νX + 232 − ωA)mod 232

39 set_gt_u_imm 0 ω′B = ωA > νX
61 set_gt_s_imm 0 ω′B = Z4(ωA) > Z4(νX)

75 shlo_l_imm_alt 0 ω′B = (νX ⋅ 2ωA mod 32)mod 232

72 shlo_r_imm_alt 0 ω′B = ⌊νX ÷ 2ωA mod 32⌋

80 shar_r_imm_alt 0 ω′B = Z−14 (⌊Z4(νX) ÷ 2ωA mod 32⌋)

24 branch_eq 0 branch(νX , ωA = ωB)
30 branch_ne 0 branch(νX , ωA ≠ ωB)
47 branch_lt_u 0 branch(νX , ωA < ωB)
48 branch_lt_s 0 branch(νX ,Z4(ωA) < Z4(ωB))
41 branch_ge_u 0 branch(νX , ωA ≥ ωB)
43 branch_ge_s 0 branch(νX ,Z4(ωA) ≥ Z4(ωB))

A.4.5. Instructions with Arguments of Three Registers.
(215) ℓ = 3, ωD ≡ ωd, ω′D ≡ ω′d, ωA ≡ ωa, ω′A ≡ ω′a, a R d = (εı)1/16, ωB ≡ ω(εı)2 , ω′B ≡ ω′(εı)2

In the case that the above condition is not met, then the instruction is considered invalid, and it results in a panic;
ζ = ☇.

(εı)0 Name ξ∆ Mutations

8 add 0 ω′D = (ωA + ωB)mod 232

20 sub 0 ω′D = (ωA + 232 − ωB)mod 232

23 and 0 ∀i ∈ N32 ∶ B4(ω′D)i = B4(ωA)i ∧B4(ωB)i
28 xor 0 ∀i ∈ N32 ∶ B4(ω′D)i = B4(ωA)i ⊕B4(ωB)i
12 or 0 ∀i ∈ N32 ∶ B4(ω′D)i = B4(ωA)i ∨B4(ωB)i
34 mul 0 ω′D = (ωA ⋅ ωB)mod 232

67 mul_upper_s_s 0 ω′D = Z−14 (⌊(Z4(ωA) ⋅Z4(ωB)) ÷ 232⌋)

57 mul_upper_u_u 0 ω′D = ⌊(ωA ⋅ ωB) ÷ 232⌋

81 mul_upper_s_u 0 ω′D = Z−14 (⌊(Z4(ωA) ⋅ ωB) ÷ 232⌋)

68 div_u 0 ω′D =
⎧⎪⎪⎨⎪⎪⎩

232 − 1 if ωB = 0
⌊ωA ÷ ωB⌋ otherwise

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 33

(εı)0 Name ξ∆ Mutations

64 div_s 0 ω′D =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

232 − 1 if ωB = 0
ωA if Z4(ωA) = −231 ∧Z4(ωB) = −1
Z−14 (⌊Z4(ωA) ÷Z4(ωB)⌋) otherwise

73 rem_u 0 ω′D =
⎧⎪⎪⎨⎪⎪⎩

ωA if ωB = 0
⌊ωA mod ωB⌋ otherwise

70 rem_s 0 ω′D =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ωA if ωB = 0
0 if Z4(ωA) = −231 ∧Z4(ωB) = −1
Z−14 (⌊Z4(ωA)mod Z4(ωB)⌋) otherwise

36 set_lt_u 0 ω′D = ωA < ωB

58 set_lt_s 0 ω′D = Z4(ωA) < Z4(ωB)

55 shlo_l 0 ω′D = (ωA ⋅ 2ωB mod 32)mod 232

51 shlo_r 0 ω′D = ⌊ωA ÷ 2ωB mod 32⌋

77 shar_r 0 ω′D = Z−14 (⌊Z4(ωA) ÷ 2ωB mod 32⌋)

83 cmov_iz 0 ω′D =
⎧⎪⎪⎨⎪⎪⎩

0 if ωB = 0
ωA otherwise

84 cmov_nz 0 ω′D =
⎧⎪⎪⎨⎪⎪⎩

ωA if ωB = 0
0 otherwise

A.4.6. Instructions with Arguments of One Immediate.
(216) ℓ = 1 + x, ∃x, νX ∈ NR ∶ (εı)1⋅⋅⋅+x = E(νX)

In the case that the above condition is not met, then the instruction is considered invalid, and it results in a panic;
ζ = ☇.

(εı)0 Name ξ∆ Mutations

5 jump 0 branch(νX ,⊺)
78 ecalli 0 ζ = h̵ × νX

A.4.7. Instructions with Arguments of Two Immediates.
(217) ℓ = 3 + x + y, ∃x, y, νX , νY ∈ NR ∶ (εı)1⋅⋅⋅+x = E(νX) ∧ (εı)2+x⋅⋅⋅+y = E(νY)

In the case that the above condition is not met, then the instruction is considered invalid, and it results in a panic;
ζ = ☇.

(εı)0 Name ξ∆ Mutations

62 store_imm_u8 0 µ′
↺
νY
= νX mod 28

79 store_imm_u16 0 µ′
↺
νY ⋅⋅⋅+2 = E2(νX mod 216)

38 store_imm_u32 0 µ′
↺
νY ⋅⋅⋅+4 = E4(νX)

A.4.8. Instructions with Arguments of Two Registers.
(218) ℓ = 2, ωD ≡ ωd, ω′D ≡ ω′d, ωA ≡ ωa, ω′A ≡ ω′a, a R d = (εı)1/16

In the case that the above condition is not met, then the instruction is considered invalid, and it results in a panic;
ζ = ☇.

(εı)0 Name ξ∆ Mutations

82 move_reg 0 ω′D = ωA

87 sbrk 0 Nω′
D
⋅⋅⋅+ωA

∈ V∗µ
All ranges are guaranteed unique for all invocations of this instruction

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 34

A.5. Host Call Definition. An extended version of the pvm invocation which is able to progress an inner host-call
state-machine in the case of a host-call halt condition is defined as ΨH :

(219) ΨH ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Y,NR,NG, ⟦NR⟧13,M,ΩX ,X)→ ({☇,∞,∎} ∪ {

F} ×NR,ZG, ⟦NR⟧13,M,X)

(c, ı, ξ, ω, µ, f,x)↦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(F× a, ı′, ξ′, ω′, µ′,x′) if ⋀{
ζ = h̵ × h

F× a = f(h, ξ′, ω′, µ′,x′)

ΨH(c, ı′ + 1, ξ′′, ω′′, µ′′, f,x′′) if ⋀{
ζ = h̵ ×⎧⎩h, i⎫⎭
(ξ′′, ω′′, µ′′,x′′) = f(h, ξ′, ω′, µ′,x)

(ζ, ı′, ξ′, ω′, µ′,x) otherwise
where (ζ, ı′, ξ′, ω′, µ′) = Ψ(c, ı, ξ, ω, µ)

On exit, the instruction counter ı′ references the instruction which caused the exit. Should the machine be invoked
again using this instruction counter and code, then the same instruction which caused the exit would be executed. This
is sensible when the instruction is one which necessarily needs re-executing such as in the case of an out-of-gas or page
fault reason.

However, when the exit reason to Ψ is a host-call h̵, then the resultant instruction-counter has a value of the host-call
instruction and resuming with this state would immediately exit with the same result. Re-invoking would therefore
require both the post-host-call machine state and the instruction counter value for the instruction following the one
which resulted in the host-call exit reason. This is always one greater. Resuming the machine with this instruction
counter will continue beyond the host-call instruction.

We use both values of instruction-counter for the definition of ΨH since if the host-call results in a page fault we need
to allow the outer environment to resolve the fault and re-try the host-call. Conversely, if we successfully transition state
according to the host-call, then on resumption we wish to begin with the instruction directly following the host-call.

A.6. Standard Program Initialization. The software programs which will run in each of the four instances where
the pvm is utilized in the main document have a very typical setup pattern characteristic of an output of a compiler
and linker. This means section for program-specific read-only data, read-write (heap) data and the stack. An adjunct to
this, very typical of our usage patterns is an extra read-only segment via which invocation-specific data may be passed
(i.e. arguments). It thus makes sense to define this properly in a single initializer function.

We thus define the standard program code format p, which includes not only the instructions and jump table (pre-
viously represented by the term c), but also information on the state of the ram and registers at program start. Given
some p which is appropriately encoded together with some argument data a, we can define program code c, registers ω
and ram µ through the standard initialization decoder function Y :

(220) Y ∶{
Y→ (Y, ⟦NR⟧13,M)?
p↦ x

Where:

let E3(∣o∣) ⌢ E3(∣w∣) ⌢ E2(z) ⌢ E3(s) ⌢ o ⌢w ⌢ E4(∣c∣) ⌢ c = p(221)
ZP = 214 , ZQ = 216 , ZI = 224(222)

let P (x ∈ N) ≡ ZP ⌈
x

ZP
⌉ , Q(x ∈ N) ≡ ZQ⌈

x

ZQ
⌉(223)

5ZQ +Q(∣o∣) +Q(∣w∣ + zZP) +Q(s) + ZI ≤ 232(224)

If the above cannot be satisfied, then x = ∅, otherwise x = (c, ω, µ) with c as above and ω, µ where:

(225) ∀i ∈ NR ∶ µi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎩V ▸
▸ oi−ZQ , A

▸
▸ R⎫⎪⎭ if ZQ ≤ i < ZQ + ∣o∣

(0,R) if ZQ + ∣o∣ ≤ i < ZQ + P (∣o∣)
(wi−(2ZQ+Q(∣o∣)),W) if 2ZQ +Q(∣o∣) ≤ i < 2ZQ +Q(∣o∣) + ∣w∣
(0,W) if 2ZQ +Q(∣o∣) + ∣w∣ ≤ i < 2ZQ +Q(∣o∣) + P (∣w∣) + zZP

(0,W) if 232 − 2ZQ − ZI − P (s) ≤ i < 232 − 2ZQ − ZI

(ai−(232−ZQ−ZI),R) if 232 − ZQ − ZI ≤ i < 232 − ZQ − ZI + ∣a∣

(0,R) if 232 − ZQ − ZI + ∣a∣ ≤ i < 232 − ZQ − ZI + P (∣a∣)
(0,∅) otherwise

(226) ∀i ∈ N16 ∶ ωi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

232 − 216 if i = 1
232 − 2ZQ − ZI if i = 2
232 − ZQ − ZI if i = 10
∣a∣ if i = 11
0 otherwise

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 35

A.7. Argument Invocation Definition. The four instances where the pvm is utilized each expect to be able to pass
argument data in and receive some return data back. We thus define the common pvm program-argument invocation
function ΨM :

ΨM ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Y,N,NG,Y∶ZI ,ΩX ,X)→ ((NG,Y) ∪ {☇,∞},X)

(p, ı, ξ,a, f,x)↦
⎧⎪⎪⎨⎪⎪⎩

(☇,x) if Y (p) = ∅
R(ΨH(c, ı, ξ, ω, µ, f,x)) if Y (p) = (c, ω, µ)

(227)

where R∶ (ζ, ı′, ξ′, ω′, µ′,x)↦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ζ,x) if ζ =∞
(ξ′,µ′ω′

10
⋅⋅⋅+ω′

11
) if ζ = ∎ ∧Zω′

10
⋅⋅⋅+ω′

11
⊂ Vµ′

(☇,x) otherwise
(228)

Appendix B. Virtual Machine Invocations

B.1. Host-Call Result Constants.
NONE = 232 − 1: The return value indicating an item does not exist.
OOB = 232 − 2: The return value for when a memory index is provided for reading/writing which is not accessible.
WHO = 232 − 3: Index unknown.
FULL = 232 − 4: Storage full.
CORE = 232 − 5: Core index unknown.
CASH = 232 − 6: Insufficient funds.
LOW = 232 − 7: Gas limit too low.
HIGH = 232 − 8: Gas limit too high.
WHAT = 232 − 9: Name unknown.
HUH = 232 − 10: The item is already solicited or cannot be forgotten.
OK = 0: The return value indicating general success.

Inner pvm invocations have their own set of result codes:
HALT = 0: The invocation completed and halted normally.
PANIC = 232 − 12: The invocation completed with a panic.
FAULT = 232 − 13: The invocation completed with a page fault.
HOST = 232 − 14: The invocation completed with a host-call fault.

Note return codes for a host-call-request exit are any non-zero value less than 232 − 13.

B.2. Is-Authorized Invocation. The Is-Authorized invocation is the first and simplest of the four, being totally
stateless. It provides only a single host-call function, ΩG for determining the amount of gas remaining. It accepts as
arguments the work-package as a whole, p and the core on which it should be executed, c. Formally, it is defined as ΨI :

ΨI ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(P,NC)→ Y ∪ J

(p, c)↦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r otherwise if r ∈ {∞,☇}
o otherwise if r =⎧⎩g,o⎫⎭

where (r,∅) = ΨM(pc,0,GI ,E(p, c), F,∅)

(229)

F ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Y$,NG, ⟦NR⟧6,M)→ (ZG, ⟦NR⟧2,M)

(n, ξ, ω, µ)↦
⎧⎪⎪⎨⎪⎪⎩

ΩG(ξ, ω, µ) if n = $gas
(ξ − 10, [WHAT, ω1, . . .], µ) otherwise

(230)

Note for the Is-Authorized host-call dispatch function F in equation 230, we elide the host-call context since, being
essentially stateless, it is always ∅.

B.3. Refine Invocation. We define the Refine service-account invocation function as ΨR. It is stateless, with the only
exceptions being the ability to make a historical lookup and the ability to create inner instances of the pvm.

The historical-lookup host-call function, ΩH , is designed to give the same result regardless of the state of the chain
for any time when auditing may occur (which we bound to be less than two epochs from being accumulated). However,
the lookup anchor may be up to L timeslots before the recent history and therefore adds to the potential age at the time
of audit. We therefore set D = 28,800, a safe amount of 48 hours.

The inner pvm invocation host-calls, meanwhile, depend on an integrated pvm type, which we shall denote pvm. It
holds some program code, instruction counter and ram:

(231) M ≡⎧⎩p ∈ Y,u ∈ M, i ∈ NR
⎫⎭

The Refine invocation function implicitly draws upon some recent head state δ and explicitly accepts the work payload,
y together with the service index which is the subject of refinement s, the prediction of the hash of that service’s code c

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 36

at the time of reporting, the hash of the containing work-package p, the refinement context x and the authorizer hash a
together with its output o. It results in either some error J or some refinement output blob. Formally:

ΨR∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(H,NG,NS ,H,Y,X,H,Y)→ Y ∪ J

(c, g, s, p,y,x, a,o)↦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BAD if s /∈ K(δ) ∨H(δ[s],xt, c) = ∅
BIG otherwise if ∣H(δ[s],xt, c)∣ > S

otherwise let (r,∅) = ΨM(H(δ[s],xt, c),1, g,E(s, p,y,x, a,o), F,∅)∶
r if r ∈ {∞,☇}
u if r =⎧⎩g,u⎫⎭

(232)

F ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Y$,NG, ⟦NR⟧6,M,D⟨N→M⟩)→ (NG, ⟦NR⟧2,M,D⟨N→M⟩)

(n, ξ, ω, µ,m)↦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΩH(ξ, ω, µ,m, s, δ,xt) if n = $lookup
ΩG(ξ, ω, µ,m) if n = $gas
ΩM(ξ, ω, µ,m) if n = $machine
ΩP (ξ, ω, µ,m) if n = $peek
ΩO(ξ, ω, µ,m) if n = $poke
ΩK(ξ, ω, µ,m) if n = $invoke
ΩX(ξ, ω, µ,m) if n = $expunge
(ξ − 10, [WHAT, ω1, . . .], µ) otherwise

(233)

Note for the Refine host-call dispatcher F in equation 233, we elide the host-call context since, being essentially
stateless, it is always ∅.

B.4. Accumulate Invocation. Since this is a transition which can directly affect a substantial amount of on-chain
state, our invocation context is accordingly complex. It is a tuple with elements for each of the aspects of state which
can be altered through this invocation and beyond the account of the service itself includes the deferred transfer list and
several dictionaries for alterations to preimage lookup state, core assignments, validator key assignments, newly created
accounts and alterations to account privilege levels.

Formally, we define our result context to be X, and our invocation context to be a pair of these contexts, X ×X,
with one dimension being the regular dimension and generally named x and the other being the exceptional dimension
and being named y. The only function which actually alters this second dimension is checkpoint, ΩC and so it is rarely
seen.

We track both regular and exceptional dimensions within our context mutator, but collapse the result of the invocation
to one or the other depending on whether the termination was regular or exceptional (i.e. out-of-gas or panic).

(234) X ≡
⎧⎪⎪⎪⎪⎪⎩

s ∈ A?, c ∈ [[H]Q]C, v ∈ KV, i ∈ NS ,
t ∈ [T], n ∈ D⟨NS → A⟩, p ∈⎧⎩m ∈ NS , a ∈ NS , v ∈ NS

⎫⎭

⎫⎪⎪⎪⎪⎪⎭

We define ΨA, the Accumulation invocation function as:

ΨA ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(D⟨NS → A⟩,NS ,NG, ⟦O⟧) →X ×⎧⎩r ∈ H?⎫⎭

(δ†, s, g,o) ↦
⎧⎪⎪⎨⎪⎪⎩

δ†[s] if δ†[s]c = ∅ ∨ o = []
C(ΨM(δ†[s]c,2, g,E(o), F, I(δ†[s], s))) otherwise

(235)

I(a ∈ A, s ∈ NS) ≡ (x,y) where
⎧⎪⎪⎨⎪⎪⎩

x = y =⎧⎩s ▸
▸ a, t ▸

▸ [], i, p ▸
▸ χ, c ▸

▸ φ, v ▸
▸ ι, n ▸

▸ ∅⎫⎭ ,

i = check((E−14 (H(s,η′0,Ht))mod (232 − 29)) + 28)
(236)

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 37

F (n, ξ, ω, µ, (x,y)) ≡

⎧⎪⎪⎨⎪⎪⎩

G(ΩR(ξ, ω, µ,xs, s, δ
†), (x,y)) if n = $read

G(ΩW (ξ, ω, µ,xs), (x,y)) if n = $write
G(ΩL(ξ, ω, µ, s, δ†), (x,y)) if n = $lookup
G(ΩG(ξ, ω, µ), (x,y)) if n = $gas
G(ΩI(ξ, ω, µ,xs, s, δ

†), (x,y)) if n = $info
ΩE(ξ, ω, µ, (x,y)) if n = $empower
ΩA(ξ, ω, µ, (x,y)) if n = $assign
ΩD(ξ, ω, µ, (x,y)) if n = $designate
ΩC(ξ, ω, µ, (x,y)) if n = $checkpoint
ΩN(ξ, ω, µ, (x,y)) if n = $new
ΩU(ξ, ω, µ, (x,y), s) if n = $upgrade
ΩT (ξ, ω, µ, (x,y), s, δ†) if n = $transfer
ΩQ(ξ, ω, µ, (x,y), s) if n = $quit
ΩS(ξ, ω, µ, (x,y),Ht) if n = $solicit
ΩF (ξ, ω, µ, (x,y),Ht) if n = $forget
(ξ − 10, [WHAT, ω1, . . .], µ,x) otherwise

(237)

G((ξ′, ω′, µ′, s′), (x,y)) ≡ (ξ′, ω′, µ′, (x,y)) where x = x′ except xs = s′(238)

C((x ∈X,y ∈X),o ∈ Y ∪ {∞,☇}) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ×⎧⎩r ▸
▸ o⎫⎭ if o ∈ H

x ×⎧⎩r ▸
▸ ∅⎫⎭ if o ∈ Y ∖H

y ×⎧⎩r ▸
▸ ∅⎫⎭ if o ∈ {∞,☇}

(239)

The mutator F governs how this context will alter for any given parameterization, and the collapse function C selects
one of the two dimensions of context depending on whether the virtual machine’s halt was regular or exceptional.

The initializer function I maps some service account s along with its index s to yield a mutator context such that no
alterations to state are implied (beyond those already inherent in s) in either exit scenario. Note that the component a
utilizes the random accumulator η0 and the block’s timeslot Ht to create a deterministic sequence of identifiers which
are extremely likely to be unique.

Concretely, we create the identifier from the Blake2 hash of the identifier of the creating service, the current random
accumulator η0 and the block’s timeslot. Thus, within a service’s accumulation it is almost certainly unique, but it is
not necessarily unique across all services, nor at all times in the past. We utilize a check function to find the first such
index in this sequence which does not already represent a service:

(240) check(i ∈ NS) ≡
⎧⎪⎪⎨⎪⎪⎩

i if i /∈ K(δ†)
check((i − 28 + 1)mod (232 − 29) + 28) otherwise

nb In the highly unlikely event that a block executes to find that a single service index has inadvertently been attached
to two different services, then the block is considered invalid. Since no service can predict the identifier sequence ahead
of time, they cannot intentionally disadvantage the block author.

B.5. On-Transfer Invocation. We define the On-Transfer service-account invocation function as ΨT ; it is somewhat
similar to the Accumulation Invocation except that the only state alteration it facilitates are basic alteration to the
storage of the subject account. No further transfers may be made, no privileged operations are possible, no new accounts
may be created nor other operations done on the subject account itself. The function is defined as:

ΨT ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(D⟨NS → A⟩,NS , [T]) → A

(δ‡, s, t) ↦
⎧⎪⎪⎨⎪⎪⎩

s if sc = ∅ ∨ t = []
ΨM(sc,3,∑r∈t (rg),E(t), F, s) otherwise

(241)

where s = δ‡[s] except sb = δ‡[s]b +∑
r∈t
ra(242)

F (n, ξ, ω, µ, s) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΩL(ξ, ω, µ, s, s, δ‡) if n = $lookup
ΩR(ξ, ω, µ, s, s, δ‡) if n = $read
ΩW (ξ, ω, µ, s) if n = $write
ΩG(ξ, ω, µ) if n = $gas
ΩI(ξ, ω, µ, s, s, δ‡) if n = $info
(ξ − 10, [WHAT, ω1, . . .], µ, s) otherwise

(243)

nb When considering the mutator functions ΩR and ΩI , the final arguments passed are both the post-accumulation
accounts state, δ‡. Within the function, this parameter however is denoted simply d. This is intentional and avoids
potential confusion since the functions are also utilized for the Accumulation Invocation where the argument is δ†.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 38

B.6. General Functions. This defines a number of functions broadly of the form (ξ′ ∈ ZG, ω
′ ∈ [NR]2, µ′, s′) = Ω◻(ξ ∈

NG, ω ∈ [NR]6, µ ∈ M, s ∈ A, . . .). Functions which have a result component which is equivalent to the corresponding
argument may have said components elided in the description. Functions may also depend upon particular additional
parameters.

Unlike the Accumulate functions in appendix B.7, these do not mutate an accumulation context, but merely a service
account s.

The gas function, ΩG has a parameter list suffixed with an ellipsis to denote that any additional parameters may be
taken and are provided transparently into its result. This allows it to be easily utilized in multiple pvm invocations.

ξ′ ≡ ξ − g(244)

(ω′, µ′, s′) ≡
⎧⎪⎪⎨⎪⎪⎩

(ω,µ, s) if ξ < g
(ω,µ, s) except as indicated below otherwise

(245)

Function
Identifier
Gas usage

Mutations

ΩL(ξ, ω, µ, s, s,d)
lookup
g = 10

let a =
⎧⎪⎪⎨⎪⎪⎩

s if ω0 ∈ {s,232 − 1}
d[ω0] otherwise

let [ho, bo, bz] = ω1..4

let h =
⎧⎪⎪⎨⎪⎪⎩

H(µho ⋅⋅⋅+32) if Zho ⋅⋅⋅+32 ⊂ Vµ

∇ otherwise

let v =
⎧⎪⎪⎨⎪⎪⎩

ap[h] if a ≠ ∅ ∧ h ∈ K(ap)
∅ otherwise

∀i ∈ Nmin(bz ,∣v∣) ∶ µ
′
bo+i ≡

⎧⎪⎪⎨⎪⎪⎩

vi if v ≠ ∅ ∧Zbo ⋅⋅⋅+bz ⊂ V∗µ
µbo+i otherwise

ω′0 ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

NONE if v = ∅
∣v∣ otherwise} if k ≠ ∇∧Zbo ⋅⋅⋅+bz ⊂ V∗µ

OOB otherwise

ΩR(ξ, ω, µ, s, s,d)
read
g = 10

let a =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s if ω0 ∈ {s,232 − 1}
d[ω0] otherwise if ω0 ∈ K(d)
∅ otherwise

let [ko, kz, bo, bz] = ω1..5

let k =
⎧⎪⎪⎨⎪⎪⎩

H(E4(s) ⌢ µko ⋅⋅⋅+kz) if Zko ⋅⋅⋅+kz ⊂ Vµ

∇ otherwise

let v =
⎧⎪⎪⎨⎪⎪⎩

as[k] if a ≠ ∅ ∧ k ∈ K(as)
∅ otherwise

∀i ∈ Nmin(bz ,∣v∣) ∶ µ
′
bo+i ≡

⎧⎪⎪⎨⎪⎪⎩

vi if v ≠ ∅ ∧Zbo ⋅⋅⋅+bz ⊂ V∗µ
µbo+i otherwise

ω′0 ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

NONE if v = ∅
∣v∣ otherwise} if k ≠ ∇∧Zbo ⋅⋅⋅+bz ⊂ V∗µ

OOB otherwise

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 39

Function
Identifier
Gas usage

Mutations

ΩW (ξ, ω, µ, s)
write
g = 10

let [ko, kz, vo, vz] = ω0..4

let k =
⎧⎪⎪⎨⎪⎪⎩

H(E4(s) ⌢ µko ⋅⋅⋅+kz) if Zko ⋅⋅⋅+kz ⊂ Vµ

∇ otherwise

let a =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s except K(as) = K(as) ∖ {k} if vz = 0
as[k] = µvo ⋅⋅⋅+vz otherwise} if Zvo ⋅⋅⋅+vz ⊂ Vµ

∇ otherwise

let l =
⎧⎪⎪⎨⎪⎪⎩

∣ss[k]∣ if k ∈ K(ss)
NONE otherwise

(ω′0, s′) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(l,a) if k ≠ ∇∧ a ≠ ∇∧ at ≤ ab

(FULL, s) if at > ab

(OOB, s) otherwise

ΩG(ξ, ω, . . .)
gas
g = 10

ω′0 ≡ ξ′ mod 232

ω′1 ≡ ⌊ξ′ ÷ 232⌋

ΩI(ξ, ω, µ, s, s,d)
info
g = 10

let t =
⎧⎪⎪⎨⎪⎪⎩

s if ω0 ∈ {s,232 − 1}
(d ∪ xn)[ω0] otherwise

let o = ω1

let m =
⎧⎪⎪⎨⎪⎪⎩

E(tc, tb, tt, tg, tm, tl, ti) if t ≠ ∅
∅ otherwise

∀i ∈ N∣m∣ ∶ µ′o+i ≡
⎧⎪⎪⎨⎪⎪⎩

mi if m ≠ ∅ ∧Zo⋅⋅⋅+∣m∣ ⊂ V∗µ
µbo+i otherwise

ω′0 ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

OK if m ≠ ∅ ∧Zo⋅⋅⋅+∣m∣ ⊂ V∗µ
NONE if m = ∅
OOB otherwise

B.7. Accumulate Functions. This defines a number of functions broadly of the form (ξ′ ∈ ZG, ω
′ ∈ [NR]2, µ′, (x′,y′)) =

Ω◻(ξ ∈ NG, ω ∈ [NR]6, µ ∈ M, (x ∈ X,y ∈ X), . . .). Functions which have a result component which is equivalent to the
corresponding argument may have said components elided in the description. Functions may also depend upon particular
additional parameters.

ξ′ ≡ ξ − g(246)

(ω′, µ′,x′,y′) ≡
⎧⎪⎪⎨⎪⎪⎩

(ω,µ,x,y) if ξ < g
(ω,µ,x,y) except as indicated below otherwise

(247)

Function
Identifier
Gas usage

Mutations

ΩE(ξ, ω, µ, (x,y))
empower
g = 10

(x′p)m = ω0

(x′p)a = ω1

(x′p)v = ω2

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 40

Function
Identifier
Gas usage

Mutations

ΩA(ξ, ω, µ, (x,y))
assign
g = 10

let o = ω1

let c =
⎧⎪⎪⎨⎪⎪⎩

[µo+32i⋅⋅⋅+32 ∣ i <− NQ] if Zo⋅⋅⋅+32Q ⊂ Vµ

∇ otherwise

(ω′0,x′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(OK,x except x′c[ω0] = c) if ω0 < C ∧ c ≠ ∇
(OOB,x) if c = ∇
(CORE,x) otherwise

ΩD(ξ, ω, µ, (x,y))
designate
g = 10

let o = ω0

let v =
⎧⎪⎪⎨⎪⎪⎩

[µo+176i⋅⋅⋅+176 ∣ i <− NV] if Zo⋅⋅⋅+176V ⊂ Vµ

∇ otherwise

(ω′0,x′) =
⎧⎪⎪⎨⎪⎪⎩

(OK,x except x′v = v) if v ≠ ∇
(OOB,x) otherwise

ΩC(ξ, ω, µ, (x,y))
checkpoint
g = 10

y′ ≡ x

ω′0 ≡ ξ′ mod 232

ω′1 ≡ ⌊ξ′ ÷ 232⌋

ΩN(ξ, ω, µ, (x,y))
new
g = 10

let [o, l, gl, gh,ml,mh] = ω0..6

let c =
⎧⎪⎪⎨⎪⎪⎩

µo⋅⋅⋅+32 if No⋅⋅⋅+32 ⊂ Vµ

∇ otherwise

let g = 232 ⋅ gh + gl
let m = 232 ⋅mh +ml

let a ∈ A ∪ {∇} =
⎧⎪⎪⎨⎪⎪⎩

(c, s ∶ {}, l ∶ {(c, l)↦ []}, b ∶ at, g,m) if c ≠ ∇
∇ otherwise

let b = (xs)b − at

(ω′0,x′i,x′n, (x′s)b) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(xi, check(bump(xi)),xn ∪ {xi ↦ a}, b) if a ≠ ∇∧ b ≥ (xs)t
(OOB,xT) if c = ∇
(CASH,xT) otherwise

where bump(i ∈ NS) = 28 + (i − 28 + 42)mod (232 − 29)

ΩU(ξ, ω, µ, (x,y), s)
upgrade
g = 10

let [o, gh, gl,mh,ml] = ω0..5

let c =
⎧⎪⎪⎨⎪⎪⎩

µo⋅⋅⋅+32 if No⋅⋅⋅+32 ⊂ Vµ

∇ otherwise

let g = 232 ⋅ gh + gl
let m = 232 ⋅mh +ml

(ω′0,x′[s]c,x′[s]g,x′[s]m) ≡
⎧⎪⎪⎨⎪⎪⎩

(OK, c, g,m) if c ≠ ∇
(OOB,x[s]c,x[s]g,x[s]m) otherwise

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 41

Function
Identifier
Gas usage

Mutations

ΩT (ξ, ω, µ, (x,y), s, δ)
transfer
g = 10 + ω1 + 232 ⋅ ω2

let (d, al, ah, gl, gh, o) = ω0..6,

let a = 232 ⋅ ah + al
let g = 232 ⋅ gh + gl

let t ∈ T ∪ {∇} =
⎧⎪⎪⎨⎪⎪⎩

(s, d, a,m, g) ∶m = E−1(µo⋅⋅⋅+M) if No⋅⋅⋅+M ⊂ Vµ

∇ otherwise
let b = (xs)b − a

(ω′0,x′t, (x′s)b) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(OOB,xt, (xs)b) if t = ∇
(WHO,xt, (xs)b) otherwise if d /∈ K(δ ∪ xn)
(LOW,xt, (xs)b) otherwise if g < (δ ∪ xn)[d]m
(HIGH,xt, (xs)b) otherwise if ξ < g
(CASH,xt, (xs)b) otherwise if b < (xs)t
(OK,xt t, b) otherwise

ΩX(ξ, ω, µ, (x,y), s)
quit
g = 10 + ω1 + 232 ⋅ ω2

let [d, o] = ω0,1

let a = (xs)b − (xs)t +BS

let g = ξ

let t ∈ T ∪ {∇,∅} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∅ if d ∈ {s,232 − 1}
(s, d, a,m, g) ∶m = E−1(µo⋅⋅⋅+M) otherwise if No⋅⋅⋅+M ⊂ Vµ

∇ otherwise

(ω′0,x′s,x′t) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(OK,∅,xt), virtual machine halts if t = ∅
(OOB,xt, (xs)b) otherwise if t = ∇
(WHO,xt, (xs)b) otherwise if d /∈ K(δ ∪ xn)
(LOW,xt, (xs)b) otherwise if g < (δ ∪ xn)[d]m
(OK,∅,xt t), virtual machine halts otherwise

ΩS(ξ, ω, µ, (x,y))
solicit
g = 10

let [o, z] = ω0,1

let h =
⎧⎪⎪⎨⎪⎪⎩

µo⋅⋅⋅+32 if Zo⋅⋅⋅+32 ⊂ Vµ

∇ otherwise

let a =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xs except:
al[⎧⎩h, z⎫⎭] = [] if h ≠ ∇∧ (h, z) /∈ (xs)l
al[⎧⎩h, z⎫⎭] = (xs)l[⎧⎩h, z⎫⎭] t if (xs)l[⎧⎩h, z⎫⎭] = [x, y]

∇ otherwise

(ω′0,x′s) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(OOB,xs) if h = ∇
(HUH,xs) otherwise if a = ∇
(FULL,xs) otherwise if ab < at

(OK,a) otherwise

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 42

Function
Identifier
Gas usage

Mutations

ΩF (ξ, ω, µ, (x,y), t)
forget
g = 10

let [o, z] = ω0,1

let h =
⎧⎪⎪⎨⎪⎪⎩

µo⋅⋅⋅+32 if Zo⋅⋅⋅+32 ⊂ Vµ

∇ otherwise

let a =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xs except:
K(al) = K((xs)l) ∖ {⎧⎩h, z⎫⎭} ,
K(ap) = K((xs)p) ∖ {h}

} if (xs)l[h, z] ∈ {[], [x, y]}, y < t −D

al[h, z] = (xs)l[h, z] t if ∣(xs)l[h, z]∣ = 1
al[h, z] = [(xs)l[h, z]2, t] if (xs)l[h, z] = [x, y,w], y < t −D

∇ otherwise

(ω′0,x′s) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(OOB,xs) if h = ∇
(HUH,xs) otherwise if a = ∇
(OK,a) otherwise

ΩV (ξ, ω, µ, (x,y))
invoke
g = 10

let [o, z] = ω0,1

let h =
⎧⎪⎪⎨⎪⎪⎩

µo⋅⋅⋅+32 if Zo⋅⋅⋅+32 ⊂ Vµ

∇ otherwise

let a =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xs except:
al[⎧⎩h, z⎫⎭] = [] if h ≠ ∇∧ (h, z) /∈ (xs)l
al[⎧⎩h, z⎫⎭] = (xs)l[⎧⎩h, z⎫⎭] t if (xs)l[⎧⎩h, z⎫⎭] = [x, y]

∇ otherwise

(ω′0,x′s) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(OOB,xs) if h = ∇
(HUH,xs) otherwise if a = ∇
(FULL,xs) otherwise if ab < at

(OK,a) otherwise

B.8. Refine Function. These assume some refine context M ∈ D⟨NR →⎧⎩Y,M, ⟦NR⟧13,NR
⎫⎭⟩, initially empty and which

tends to be stated as m (posterior m′).

Function
Identifier
Gas usage

Mutations

ΩH(ξ, ω, µ,m, s, δ, t)
historical_lookup
g = 10

let a =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ[s] if ω0 = 232 − 1 ∧ s ∈ K(δ)
δ[ω0] if ω0 ∈ K(δ)
∅ otherwise

let [ho, bo, bz] = ω1..4

let h =
⎧⎪⎪⎨⎪⎪⎩

H(µho ⋅⋅⋅+32) if Zho ⋅⋅⋅+32 ⊂ Vµ

∇ otherwise
let v =H(a, t, h)

∀i ∈ Nmin(bz ,∣v∣) ∶ µ
′
bo+i ≡

⎧⎪⎪⎨⎪⎪⎩

vi if v ≠ ∅ ∧Zbo ⋅⋅⋅+bz ⊂ V∗µ
µbo+i otherwise

ω′0 ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∣v∣ if v ≠ ∅
NONE otherwise} if k ≠ ∇∧Zbo ⋅⋅⋅+bz ⊂ V∗µ

OOB otherwise

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 43

Function
Identifier
Gas usage

Mutations

ΩM(ξ, ω, µ,m)
machine
g = 10

let [po, pz, i] = ω0...2

let p =
⎧⎪⎪⎨⎪⎪⎩

µpo ⋅⋅⋅+pz if Zpo ⋅⋅⋅+pz ⊂ Vµ

∇ otherwise
let n =min(n ∈ N, n /∈ K(m))
let u =⎧⎩V ▸

▸ [0,0, . . .],A ▸
▸ [∅,∅, . . .]⎫⎭

(ω′0,m) ≡
⎧⎪⎪⎨⎪⎪⎩

(OOB,m) if p = ∇
(n,m ∪ {n↦⎧⎩p,u, i⎫⎭}) otherwise

ΩP (ξ, ω, µ,m)
peek
g = 10

let [n, a, b, l] = ω0...4

let s =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∅ if n /∈ K(m)
∇ if Nb⋅⋅⋅+i /∈ Vm[n]u

m[n]ub⋅⋅⋅+i otherwise

(ω′0, µ′) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(OOB, µ) if s = ∇
(WHO, µ) if s = ∅
(OK, µ′) where µ′ = µ except µ′a⋅⋅⋅+l = s otherwise

ΩO(ξ, ω, µ,m)
poke
g = 10

let [n, a, b, l] = ω0...4

let u =
⎧⎪⎪⎨⎪⎪⎩

m[n]u if n ∈ K(m)
∇ otherwise

let s =
⎧⎪⎪⎨⎪⎪⎩

µa⋅⋅⋅+i if Na⋅⋅⋅+i ∈ Vu

∇ otherwise

let u′ = u except
⎧⎪⎪⎨⎪⎪⎩

(u′V)b⋅⋅⋅+l = s
(u′A)b⋅⋅⋅+l = [W,W, ...]

(ω′0,m′) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(OOB,m) if s = ∇
(WHO,m) otherwise if u = ∇
(OK,m′) , where m′ =m except m′[n]u = u′ otherwise

ΩK(ξ, ω, µ,m)
invoke
g = 10

let [n, o] = ω0...2

let (g,w) =
⎧⎪⎪⎨⎪⎪⎩

(E−18 (µo⋅⋅⋅+8), [E−14 (µo+8+4x⋅⋅⋅+4) ∣ x <− N13]) if No⋅⋅⋅+60 ⊂ V∗µ
(∇,∇) otherwise

let (c, i′, g′,w′,u′) = Ψ(m[n]p,m[n]i, g,w,m[n]u)
let µ∗ = µ except µ∗o⋅⋅⋅+60 = E8(g′) ⌢ E([E4(x) ∣ x <−w′])

let m∗ =m except

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m∗[n]u = u′

m∗[n]i =
⎧⎪⎪⎨⎪⎪⎩

i′ + 1 if c ∈ {h̵} ×NR

i′ otherwise

(ω′0, ω′1, µ′,m′) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(OOB, ω1, µ,m) if g = ∇
(WHO, ω1, µ,m) otherwise if n /∈m
(HOST, h, µ∗,m∗) otherwise if c = h̵ × h
(FAULT, x, µ∗,m∗) otherwise if c = F× x
(PANIC, ω1, µ

∗,m∗) otherwise if c = ☇
(HALT, ω1, µ

∗,m∗) otherwise if c = ∎

ΩX(ξ, ω, µ,m)
expunge
g = 10

let n = ω0

(ω′0,m′) ≡
⎧⎪⎪⎨⎪⎪⎩

(WHO,m) if n ≠ K(m)
(m[n]i,m ∖ n) otherwise

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 44

Appendix C. Serialization Codec

C.1. Common Terms. Our codec function E is used to serialize some term into a sequence of octets. We define the
deserialization function E−1 = E−1 as the inverse of E and able to decode some sequence into the original value. The
codec is designed such that exactly one value is encoded into any given sequence of octets, and in cases where this is not
desirable then we use special codec functions.

C.1.1. Trivial Encodings. We define the serialization of ∅ as the empty sequence:

(248) E(∅) ≡ []

We also define the serialization of an octet-sequence as itself:

(249) E(x ∈ Y) ≡ x

We define anonymous tuples to be encoded as the concatenation of their encoded elements:

(250) E(⎧⎩a, b, . . .⎫⎭) ≡ E(a) ⌢ E(b) ⌢ . . .

Passing multiple arguments to the serialization functions is equivalent to passing a tuple of those arguments. Formally:

E(a, b, c, . . .) ≡ E(⎧⎩a, b, c, . . .⎫⎭)(251)

C.1.2. Integer Encoding. We first define the trivial integer serialization functions which are subscripted by the number
of octets of the final sequence. Values are encoded in a regular little-endian fashion. Formally:

(252) El∈N∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N28l → Yl

x↦
⎧⎪⎪⎨⎪⎪⎩

[] if l = 0
[xmod 256] ⌢ El−1(⌊ x

256
⌋) otherwise

We also define the variable-size prefix 29-bit integer serialization function E4∗:

(253) E4∗∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N229 → Y1∶4

x↦
⎧⎪⎪⎨⎪⎪⎩

[28 − 28−l + ⌊ x
28l
⌋] ⌢ El(xmod 28l) if ∃l ∈ N3 ∶ 27l ≤ x < 27(l+1)

[28 − 25 + ⌊ x
224
⌋] ⌢ E3(xmod 224) if 221 ≤ x < 229

We define general integer serialization, able to encode integers of up to 264, as:

(254) E ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N264 → Y1∶9

x↦
⎧⎪⎪⎨⎪⎪⎩

[28 − 28−l + ⌊ x
28l
⌋] ⌢ El(xmod 28l) if ∃l ∈ N8 ∶ 27l ≤ x < 27(l+1)

[28 − 1] ⌢ E8(x) if x < 264

C.1.3. Sequence Encoding. We define the sequence serialization function E(⟦T ⟧) for any T which is itself a subset of the
domain of E . We simply concatenate the serializations of each element in the sequence in turn:

(255) E([i0, i1, ...]) ≡ E(i0) ⌢ E(i1) ⌢ . . .

Thus, conveniently, fixed length octet sequences (e.g. hashes H and its variants) have an identity serialization.

C.1.4. Discriminator Encoding. When we have sets of heterogeneous items such as a union of different kinds of tuples
or sequences of different length, we require a discriminator to determine the nature of the encoded item for successful
deserialization. Discriminators are encoded as a general integer and are encoded immediately prior to the item.

We generally use a length discriminator which serializing sequence terms which have variable length (e.g. general
blobs Y or unbound numeric sequences ⟦N⟧) (though this is omitted in the case of fixed-length terms such as hashes
H).18 In this case, we simply prefix the term its length prior to encoding. Thus, for some term y ∈⎧⎩x ∈ Y, . . .⎫⎭, we would
generally define its serialized form to be E(∣x∣) ⌢ E(x) ⌢ To avoid repetition of the term in such cases, we define the
notation ↕x to mean that the term of value x is variable in size and requires a length discriminator. Formally:

(256) ↕x ≡⎧⎩∣x∣, x⎫⎭ thus E(↕x) ≡ E(∣x∣) ⌢ E(x)

We also define a convenient discriminator operator ¿x specifically for terms defined by some serializable set in union
with ∅ (generally denoted for some set S as S?):

¿x ≡
⎧⎪⎪⎨⎪⎪⎩

0 if x = ∅
(1, x) otherwise

(257)

18Note that since specific values may belong to both sets which would need a discriminator and those that would not then we are sadly
unable to introduce a function capable of serializing corresponding to the term’s limitation. A more sophisticated formalism than basic
set-theory would be needed, capable of taking into account not simply the value but the term from which or to which it belongs in order
to do this succinctly.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 45

C.1.5. Bit Sequence Encoding. A sequence of bits b ∈ B is a special case since encoding each individual bit as an octet
would be very wasteful. We instead pack the bits into octets in order of least significant to most, and arrange into an
octet stream. In the case of a variable length sequence, then the length is prefixed as in the general case.

E(b ∈ B) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[] if b = []

[
min(8,∣b∣)
∑
i=0

bi ⋅ 2i] ⌢ E(b8...) otherwise
(258)

C.1.6. Dictionary Encoding. Dictionaries whose key and value domains are encodable and whose key domains are ordered
are themselves encodable in one of two manners. The first is as a sequence of encoded key/value pairs ordered by the
key. This is generally used when the expected number of entries is somewhat less than the number of possible keys (i.e.
the size of the active domain is somewhat less than the domain).

(259) ∀K,V ∶ E(d ∈ D⟨K → V ⟩) ≡ E(↕[k ^̂⎧⎩E(k),E(d[k])⎫⎭∣ k ∈ K(d)])

The second is as a sequence of encoded values only, with each entry having an implicit key according to an enumeration
over its domain. This is typically used when the domain is small in magnitude and typically similar in magnitude to the
active domain. In order to account for the possibility of a key not existing in the dictionary (i.e. the domain and the
active domain not being equal) we prefix each value with an octet of one to indicate that the key is indeed present in
the dictionary and place an octet of zero if the implied key is not.

We provide a function S to deliver this from a regular dictionary:

(260) ∀K,V ∶ S(d ∈ D⟨K → V ⟩) ≡
Õ×××Ö
[k
^̂
^̂
^

[1] ⌢ E(d[k]) if k ∈ K(d)
[0] otherwise ∣k ∈K]

C.2. Block Serialization. A block B is serialized as a tuple of its elements in regular order, as implied in equations
12, 13 and 35. For the header, we define both the regular serialization and the unsigned serialization EU (the latter has
no inverse). Formally:

E(B) = E (
H, ↕ET , ↕[(r, [(v,E2(i), s) ∣ (v, i, s) <− v]) ∣ (r,v) <− EJ],
↕[⎧⎩s, ↕p⎫⎭∣⎧⎩s, p⎫⎭<− EP], ↕EA, ↕[⎧⎩c,w, ↕a⎫⎭∣⎧⎩c,w, a⎫⎭<− EG]

)(261)

E(H) = EU(H) ⌢ E(Hs)(262)
EU(H) = E(Hp,Hr,Hx) ⌢ E4(Ht) ⌢ E(¿He, ¿Hw,E4(Hk),Hv)(263)
E(x ∈ X) ≡ E(xa, xs, xb, xl) ⌢ E4(xt) ⌢ E(¿xp)(264)
E(x ∈ S) ≡ E(xh) ⌢ E4(xl) ⌢ E(xu)(265)
E(x ∈ L) ≡ E4(xs) ⌢ E(xc, xl) ⌢ E8(xg) ⌢ E(O(xo))(266)
E(x ∈W) ≡ E(xa, ↕xo, xx, xs, ↕xr)(267)
E(x ∈ P) ≡ E(↕xj,E4(xh), xc, ↕xp, xx, ↕xi)(268)
E(x ∈ C) ≡ E(xy, xr)(269)

O(o ∈ J ∪ Y) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, ↕o) if o ∈ Y
1 if o =∞
2 if o = ☇
3 if o = BAD
4 if o = BIG

(270)

Note the use of O above to succinctly encode the result of a work item and the slight transformations of EG and
EP to take account of the fact their inner tuples contain variable-length sequence terms a and p which need length
discriminators.

Appendix D. State Serialization and Merklization

The Merklization process defines a cryptographic commitment from which arbitrary information within state may be
provided as being authentic in a concise and swift fashion. We describe this in two stages; the first defines a mapping
from 32-octet sequences to (unlimited) octet sequences in a process called state serialization. The second forms a 32-octet
commitment from this mapping in a process called Merklization.

D.1. State Serialization. The serialization of state primarily involves placing all the various components of σ into a
single mapping from 32-octet sequence state-keys to octet sequences of indefinite length. The state-key is constructed
from a hash component and a chapter component, equivalent to either the index of a state component or, in the case of
the inner dictionaries of δ, a service index.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 46

We define the state-key constructor functions C as:

(271) C ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N28 ∪ (N28 ,NS) ∪⎧⎩NS ,Y⎫⎭→ H

i ∈ N28 ↦ [i,0,0, . . .]
(i, s ∈ NS)↦ [i, n0, n1, n2, n3,0,0, . . .] where n = E4(s)

(s, h)↦ [n0, h0, n1, h1, n2, h2, n3, h3, h4, h5, . . . , h27] where n = E4(s)
The state serialization is then defined as the dictionary built from the amalgamation of each of the components.

Cryptographic hashing ensures that there will be no duplicate state-keys given that there are no duplicate inputs to C.
Formally, we define T which transforms some state σ into its serialized form:

(272) T (σ) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩

C(1)↦ E([↕x ∣ x <− α]) ,
C(2)↦ E(φ) ,
C(3)↦ E(↕[(h,EM(b), s, ↕p) ∣ (h,b, s,p) <− β]) ,

C(4)↦ E(
⎧⎪⎪⎪⎪⎪⎪⎩
γk, γz,{

0 if γs ∈ ⟦C⟧E
1 if γs ∈ ⟦HB⟧E

}, γs, ↕γa
⎫⎪⎪⎪⎪⎪⎪⎭
) ,

C(5)↦ E(↕[x ^̂x ∈ ψa], ↕[x ^̂x ∈ ψb], ↕[x ^̂x ∈ ψp], ψk) ,
C(6)↦ E(η) ,
C(7)↦ E(ι) ,
C(8)↦ E(κ) ,
C(9)↦ E(λ) ,
C(10)↦ E([¿(w, ↕g,E4(t)) ∣ (w, t,g) <− ρ]) ,
C(11)↦ E4(τ) ,
C(12)↦ E4(χ) ,

∀(s↦ a) ∈ δ ∶ C(255, s)↦ ac ⌢ E8(ab,ag,am,al) ⌢ E4(ai) ,
∀(s↦ a) ∈ δ, (h↦ v) ∈ as ∶ C(s, h)↦ v ,

∀(s↦ a) ∈ δ, (h↦ p) ∈ ap ∶ C(s, h)↦ p ,

∀(s↦ a) ∈ δ, (⎧⎩h, l⎫⎭↦ t) ∈ al ∶ C(s,E4(l) ⌢ (¬h4∶))↦ E(↕[E4(x) ∣ x <− t])

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Note that most rows describe a single mapping between an integer-derived key and the serialization of a state com-

ponent. However, the final four rows each define sets of mappings since these items act over all service accounts and in
the case of the final three rows, the keys of a nested dictionary with the service.

Also note that all non-discriminator integer serialization in state is done in fixed-length according to the size of the
term.

D.2. Merklization. With T defined, we now define the rest ofMS which primarily involves transforming the serialized
mapping into a cryptographic commitment. We define this commitment as the root of the binary Patricia Merkle Trie
with a format optimized for modern compute hardware, primarily by optimizing sizes to fit succinctly into typical memory
layouts and reducing the need for unpredictable branching.

D.2.1. Node Encoding and Trie Identification. We identify (sub-)tries as the hash of their root node, with one exception:
empty (sub-)tries are identified as the zero-hash, H0.

Nodes are fixed in size at 486 bit (60 bytes and six bits) in order to fit 63 into a 4,096-byte memory page, typical for
modern hardware. (We actually make the nodes a round 488 bits, or 61 bytes, but we fix the first two bits as zero, so
they need not be stored explicitly on disk.) Each node is either a branch, a leaf or an embedded-value leaf. The first
two bits discriminate between these.

In the case of an embedded-value leaf, then the value is stored directly in the node and 5 bits following the first may
be used to determine the length of the embedded data. Of the remaining 480 bits, the first 224 bits are dedicated to the
last 224 bits of the key and 256 are defined as the value, filling with zeroes if its length is less than 32 bytes.

In the case of a branch, the remaining 484 bits are split between the two child node hashes, using the first 242 bits of
each of the sub-trie identities.

In the case of a regular leaf, the remaining 484 bits are dedicated to the last 228 bits of the key and the 256 bits of
the hash of the value.

Formally, we define the encoding functions B and L:

B∶{
(H,H)→ B488

(l, r)↦ [0,0,0,0] ⌢ l13∶16 ⌢ r13∶16 ⌢ l16∶ ⌢ r16∶
(273)

L∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(H,Y)→ B488

(k, v)↦
⎧⎪⎪⎨⎪⎪⎩

[0,0,1] ⌢ bits(E1(∣v∣ − 1))∶5 ⌢ bits(k)32∶ ⌢ bits(v) ⌢ [0,0, . . .] if 0 < ∣v∣ ≤ 32
[0,0,0,1] ⌢ bits(k)28∶ ⌢ bits(H(v)) otherwise

(274)

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 47

We may then define, the Merklization function MS is as:

MS(σ) ≡M({(bits(k)↦⎧⎩k, v⎫⎭) ∣ (k ↦ v) ∈ T (σ)})(275)

M(d ∶ D⟨B→ (H,Y)⟩) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

H0 if ∣d∣ = 0
H(bits−1(L(k, v))) if V(d) = {(k, v)}

H(bits−1(B(l, r))) otherwise,where ∀b, p ∶ (b↦ p) ∈ d⇔ (b1∶ ↦ d) ∈
⎧⎪⎪⎨⎪⎪⎩

l if b0 = 0
r if b0 = 1

(276)

Appendix E. Shuffling

The Fisher-Yates shuffle function is defined formally as:

(277) ∀T, l ∈ N ∶ F ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(⟦T ⟧l, ⟦N⟧l∶)→ ⟦T ⟧l

(s, r)↦
⎧⎪⎪⎨⎪⎪⎩

[sr0 mod l] ⌢ F([si ∣ i <− Nl ∖ {r0 mod l}], [r1, r2, . . .]) if s ≠ []
[] otherwise

Since it is often useful to shuffle a sequence based on some random seed in the form of a hash, we provide a secondary
form of the shuffle function F which accepts a 32-byte hash instead of the numeric sequence. We define Q, the numeric-
sequence-from-hash function, thus:

∀l ∈ N ∶ Ql∶
⎧⎪⎪⎨⎪⎪⎩

H→ ⟦Nl⟧

h↦ [E−14 (H(h ⌢ E4(⌊i/8⌋))4i mod 32...) ∣ i ∈ Nl]
(278)

∀T, l ∈ N ∶ F ∶{
(⟦T ⟧l,H)→ ⟦T ⟧l
(s, h)↦ F(s,Ql(h))

(279)

Appendix F. General Merklization

F.1. Binary Merkle Tree. The Merkle tree is a cryptographic data structure yielding a hash commitment to a specific
sequence of values. It provides O(N) computation and O(logN) proof size for inclusion. This well-balanced formulation
ensures that the maximum depth of any leaf is minimal and that the number of leaves at that depth is also minimal.

We define the well-balanced binary Merkle function as M2:

(280)

M2∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(⟦Yn>32⟧,Y→ H)→ H

(v,H)↦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0 if ∣v∣ = 0
H(v0) if ∣v∣ = 1
N(v,H) otherwise

where N ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(⟦Yn>32⟧1∶,Y→ H)→ Yn>32 ∪H

(v,H)↦
⎧⎪⎪⎨⎪⎪⎩

v0 if ∣v∣ = 1
H(N(v...⌈∣v∣/2⌉) ⌢ N(v⌈∣v∣/2⌉...)) otherwise

F.2. Merkle Mountain Ranges. The Merkle mountain range (mmr) is an append-only cryptographic data structure
which yields a commitment to a sequence of values. Appending to an mmr and proof of inclusion of some item within
it are both O(logN) in time and space for the size of the set.

We define a Merkle mountain range as being within the set ⟦H?⟧, a sequence of peaks, each peak the root of a
Merkle tree containing 2i items where i is the index in the sequence. Since we support set sizes which are not always
powers-of-two-minus-one, some peaks may be empty, ∅ rather than a Merkle root.

Since the sequence of hashes is somewhat unwieldy as a commitment, Merkle mountain ranges are themselves generally
hashed before being published. Hashing them removes the possibility of further appending so the range itself is kept on
the system which needs to generate future proofs.

We define the append function A as:

(281)

A∶
⎧⎪⎪⎨⎪⎪⎩

(⟦H?⟧,H,Y→ H)→ ⟦H?⟧
(r, l,H)↦ P (r, l, 0,H)

where P ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(⟦H?⟧,H,N,Y→ H)→ ⟦H?⟧

(r, l, n,H)↦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r l if n ≥ ∣r∣
R(r, n, l) if n < ∣r∣ ∧ rn = ∅
P (R(r, n,∅),H(rn ⌢ l), n + 1,H) otherwise

and R∶
⎧⎪⎪⎨⎪⎪⎩

(⟦T ⟧,N, T)→ ⟦T ⟧
(s, i, v)↦ s′ where s′ = s except s′i = v

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 48

We define the mmr encoding function as EM :

(282) EM ∶
⎧⎪⎪⎨⎪⎪⎩

⟦H?⟧→ H

b↦ E(↕[¿x ∣ x <− b])

Appendix G. Bandersnatch Ring VRF

The Bandersnatch curve is defined by cryptoeprint:2021/1152.
The singly-contextualized Bandersnatch Schnorr-like signatures Fm

k ⟨c⟩ are defined as a formulation under the ietf vrf
template specified by hosseini2024bandersnatch (as IETF VRF) and further detailed by rfc9381.

F
m∈Y
k∈HB

⟨c ∈ H⟩ ⊂ Y96 ≡ {x ∣ x ∈ Y96,verify(k, c,m,decode(x∶32),decode(x32∶)) = ⊺}(283)
Y(s ∈ Fm

k ⟨c⟩) ∈ H ≡ hashed_output(decode(x∶32) ∣ x ∈ Fm
k ⟨c⟩)(284)

The singly-contextualized Bandersnatch Ringvrf proofs F̄m
r ⟨c⟩ are a zk-snark-enabled analogue utilizing the Pedersen

vrf, also defined by hosseini2024bandersnatch and further detailed by cryptoeprint:2023/002.

R(⟦HB⟧) ∈ YR ≡ ...(285)

F̄
m∈Y
r∈YR⟨c ∈ H⟩ ⊂ Y784 ≡ {x ∣ x ∈ Y784,verify(r, c,m,decode(x∶32),decode(x32∶)) = ⊺}(286)
Y(p ∈ F̄m

r ⟨c⟩) ∈ H ≡ hashed_output(decode(x∶32) ∣ x ∈ F̄m
r ⟨c⟩)(287)

Appendix H. Erasure Coding

We assume a piece-encode function Epiece ∶ Y2048 → ⟦Y6⟧1024 and decode function E−1piece ∶ ⟦Y6⟧342 → Y2048. This is a
Reed-Solomon erasure codec with a rate of 1:3 and basis as defined by lin2014novel. For our 1,023 validators, we use
a message size of n = 1024 to take advantage of a suitable FFT for fast encoding (i.e. 210).

We assume some data blob d ∈ Y2048⋅k, k ∈ N. We are able to express this as a whole number of k pieces each of a
sequence of 2,048 octets. We denote these pieces p ∈ ⟦Y2048⟧ = split2048(p). Each piece is then split into 1,024 chunks
each a six octet sequence. The resulting matrix of chunks is grouped by its index in its piece and concatenated to form
1,024 super-chunks, made up of many six octet subsequences one from each piece. Any 342 of these super-chunks may
then be used to reconstruct the original data d.

Formally we begin by defining two utility functions for splitting some large sequence into a number of equal-sized
sub-sequences and for joining subsequences back into a single large sequence:

∀n, k ∈ N ∶ splitn(d ∈ Yk⋅n) ∈ ⟦Yn⟧k ≡ [d0⋅⋅⋅+n,dn⋅⋅⋅+n,⋯,d(k−1)n⋅⋅⋅+n](288)
∀n, k ∈ N ∶ join(c ∈ ⟦Yn⟧k) ∈ Yk⋅n ≡ c0 ⌢ c1 ⌢ . . .(289)

We define Tx as the transposition of the sequence-of-sequences x:
(290) T[[x0,0,x0,1,x0,2, . . .], [x1,0,x1,1, . . .], . . .] ≡ [[x0,0,x1,0,x2,0, . . .], [x0,1,x1,1, . . .], . . .]

We may then define our erasure-code chunking function which accepts an arbitrary sized data blob whose length
divides wholly into 2,048 octets and results in 1,024 sequences of sequences each of smaller blobs:

(291) ∀k ∈ N ∶ C∶
⎧⎪⎪⎨⎪⎪⎩

Y2048⋅k → ⟦Y6k⟧1024
d↦ [join(c) ∣ c <− T[Epiece(p) ∣ p <− split2048(d)]]

It may be inverted with only one-third-plus-one of the items of its result (i.e. 342) needed to rebuild the original blob:

(292) ∀k ∈ N ∶ C−1∶
⎧⎪⎪⎨⎪⎪⎩

⟦Y6k⟧342 → Y2048⋅k

c↦ join([E−1piece(x) ∣ x <− T[split6(x) ∣ x <− c]])

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 49

Appendix I. Index of Notation

I.1. Sets.

I.1.1. Regular Notation.
N: The set of positive integers including zero. Subscript denotes one greater than the maximum. See section 3.4.

N+: The set of positive integers not including zero.
NB: The set of balance values. Equivalent to N264 . See equation 29.
NG: The set of unsigned gas values. Equivalent to N264 . See equation 31.
NL: The set of blob length values. Equivalent to N232 . See section 3.4.
NS: The index of a service. Equivalent to N232 . See section 84.
NT : The set of timeslot values. Equivalent to N232 . See equation 34.

Q: The set of rational numbers. Unused.
R: The set of real numbers. Unused.
Z: The set of integers. Subscript denotes range. See section 3.4.

ZG: The set of signed gas values. Equivalent to Z−263 ∶263 . See equation 31.

I.1.2. Custom Notation.
A: The set of service accounts. See equation 86.
B: The set of Boolean sequences/bitstrings. Subscript denotes length. See section 3.7.
C: The set of seal-key tickets. See equation 48. Not used as the set of complex numbers.
D: The set of dictionaries. See section 3.5.

D⟨K → V ⟩: The set of dictionaries making a partial bijection of domain K to range V . See section 3.5.
E: The set of valid Ed25519 signatures. A subset of Y64. See section 3.8.

EK⟨M⟩: The set of valid Ed25519 signatures of the key K and message M . A subset of E. See section 3.8.
F: The set of Bandersnatch signatures. A subset of Y64. See section 3.8. NOTE: Not used as finite fields.

FM
K ⟨C⟩: The set of Bandersnatch signatures of the public key K, context C and message M . A subset of F.

See section 3.8.
F̄: The set of Bandersnatch Ringvrf proofs. See section 3.8.
F̄M
R ⟨C⟩: The set of Bandersnatch Ringvrf proofs of the root R, context C and message M . A subset of F̄.

See section 3.8.
G: Unused.
H: The set of 32-octet cryptographic values. A subset of Y32. H without a subscript generally implies a hash

function result. See section 3.8. NOTE: Not used as quaternions.
HB: The set of Bandersnatch public keys. A subset of Y32. See section 3.8 and appendix G.
HE: The set of Ed25519 public keys. A subset of Y32. See section 3.8.2.
YR: The set of Bandersnatch ring roots. A subset of Y32. See section 3.8 and appendix G.

I: The set of work items. See equation 165.
J: The set of work execution errors.
K: The set of validator key-sets. See equation 49.
L: The set of work results.
M: The set of pvm ram states. A superset of Y232 . See appendix A.
O: The accumulation operand element, corresponding to a single work result.
P: The set of work-packages. See equation 162.
S: The set of work-package specifications.
T: The set of deferred transfers.
U: Unused.
Vµ: The set of validly readable indices for pvm ram µ. See appendix A.
V∗µ: The set of validly writable indices for pvm ram µ. See appendix A.
W: The set of work-reports.
X: The set of refinement contexts.
Y: The set of octet strings/“blobs”. Subscript denotes length. See section 3.7.

YBLS: The set of BLS public keys. A subset of Y144. See section 3.8.2.
YR: The set of Bandersnatch ring roots. A subset of Y196608. See section 3.8 and appendix G.

I.2. Functions.
Λ: The historical lookup function. See equation 90.
Ξ: The work result computation function. See equation 167.
Υ: The general state transition function. See equations 11, 15.
Ψ: The whole-program pvm machine state-transition function. See equation A.

Ψ1: The single-step (pvm) machine state-transition function. See appendix A.
ΨA: The Accumulate pvm invocation function. See appendix B.
ΨH : The host-function invocation (pvm) with host-function marshalling. See appendix A.
ΨI : The Is-Authorized pvm invocation function. See appendix B.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 50

ΨM : The marshalling whole-program pvm machine state-transition function. See appendix A.
ΨR: The Refine pvm invocation function. See appendix B.
ΨT : The On-Transfer pvm invocation function. See appendix B.

Ω: Virtual machine host-call functions. See appendix B.
ΩA: Assign-core host-call.
ΩC : Checkpoint host-call.
ΩD: Designate-validators host-call.
ΩE: Empower-service host-call.
ΩF : Forget-preimage host-call.
ΩG: Gas-remaining host-call.
ΩH : Historical-lookup-preimage host-call.
ΩI : Information-on-service host-call.
ΩK : Kickoff-pvm host-call.
ΩL: Lookup-preimage host-call.
ΩM : Make-pvm host-call.
ΩN : New-service host-call.
ΩO: Poke-pvm host-call.
ΩP : Peek-pvm host-call.
ΩQ: Quit-service host-call.
ΩS: Solicit-preimage host-call.
ΩR: Read-storage host-call.
ΩT : Transfer host-call.
ΩU : Upgrade-service host-call.
ΩW : Write-storage host-call.
ΩX : Expunge-pvm host-call.

I.3. Utilities, Externalities and Standard Functions.
A(. . .): The Merkle mountain range append function. See equation 281.
Bn(. . .): The octets-to-bits function for n octets. Superscripted −1 to denote the inverse. See equation 206.
Cn(. . .): The erasure coding function for n chunks. Superscripted −1 to denote the inverse. See equation 291.
E(. . .): The scale encode function. Superscripted −1 to denote the inverse. See appendix C.
F(. . .): The Fisher-Yates shuffle function. See equation 277.
H(. . .): The Blake 2b 256-bit hash function. See section 3.8.
HK(. . .): The Keccak 256-bit hash function. See section 3.8.
K(. . .): The domain, or set of keys, of a dictionary. See section 3.5.
M2(. . .): The binary Merklization function. See appendix F.
MS(. . .): The state Merklization function. See appendix D.
N (. . .): The erasure-coding chunks function. See appendix H.
Pn(. . .): The octet-array zero-padding function. See equation 168.
Q(. . .): The numeric-sequence-from-hash function. See equation 279.
R(. . .): The Bandersnatch ring root function. See section 3.8 and appendix G.
Sk(. . .): The general signature function. See section 3.8.
T : The current time expressed in seconds after the start of the Jam Common Era. See section 4.4.
U(. . .): The substitute-if-nothing function. See equation 2.
V(. . .): The range, or set of values, of a dictionary or sequence. See section 3.5.
Y(. . .): The alias/output/entropy function of a Bandersnatch vrf signature/proof. See section 3.8 and appendix

G.
Zn(. . .): The into-signed function for a value in N28n . Superscripted with −1 to denote the inverse. See equation

204.
℘(. . .): Power set function.

I.4. Values.

I.4.1. Block-context Terms. These terms are all contextualized to a single block. They may be superscripted with some
other term to alter the context and reference some other block.

A: The ancestor set of the block. See equation 37.
B: The block. See equation 12.
C: The service accumulation-commitment, used to form the Beefy root. See equation 156.
E: The block extrinsic. See equation 13.
Fv: The Beefy signed commitment of validator v. See equation 190.
H: The block header. See equation 35.
G: The mapping from cores to guarantor keys. See section 11.3.
G∗: The mapping from cores to guarantor keys for the previous rotation. See section 11.3.
Q: The selection of ready work-reports which a validator determined they must audit. See equation 171.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 51

R: The set of work-reports which have now become available and ready for accumulation. See equation 121.
S: The set of indices of services which have been accumulated (“progressed”) in the block. See equation 150.
T: The ticketed condition, true if the block was sealed with a ticket signature rather than a fallback. See equations

56 and 57.
U: The audit condition, equal to ⊺ once the block is audited. See section 13.5.

Without any superscript, the block is assumed to the block being imported or, if no block is being imported, the head
of the best chain (see section 15). Explicit block-contextualizing superscripts include:

B♮: The latest finalized block. See equation 15.
B♭: The block at the head of the best chain. See equation 15.

I.4.2. State components. Here, the prime annotation indicates posterior state. Individual components may be identified
with a letter subscript.

α: The core αuthorizations pool. See equation 81.
β: Information on the most recent βlocks.
γ: State concerning Safrole. See equation 45.

γa: The sealing-key contest ticket accumulator.
γk: The validator keys for the following epoch.
γs: The sealing-key series of the current epoch.
γz: The current epoch’s Bandersnatch root.

δ: The (prior) state of the service accounts.
δ†: The post-preimage integration, pre-accumulation intermediate state.
δ‡: The post-accumulation, pre-transfer intermediate state.

η: The eηtropy accumulator and epochal raηdomness.
ι: The validator keys and metadata to be drawn from next.
κ: The validator κeys and metadata currently active.
λ: The validator keys and metadata which were active in the prior epoch.
ρ: The ρending reports, per core, which are being made available prior to accumulation.

ρ†: The post-judgement, pre-guarantees-extrinsic intermediate state.
ρ‡: The post-guarantees-extrinsic, pre-assurances-extrinsic, intermediate state.

σ: The σverall state of the system. See equations 11, 14.
τ : The most recent block’s τ imeslot.
φ: The authorization queue.
ψ: Votes regarding any ongoing disputes.
χ: The privileged service indices.

χm: The index of the empower service.
χv: The index of the designate service.
χa: The index of the assign service.

I.4.3. Virtual Machine components.
ε: The instruction sequence.
ν: The immediate values of an instruction.
µ: The memory sequence; a member of the set M.
ξ: The gas counter.
ω: The registers.
ζ: The exit-reason resulting from all machine state transitions.
ϖ: The sequence of basic blocks of the program.
ı: The instruction counter.

I.4.4. Constants.
A = 8: The period, in seconds, between audit tranches.
BI = 10: The additional minimum balance required per item of elective service state.
BL = 1: The additional minimum balance required per octet of elective service state.
BS = 100: The basic minimum balance which all services require.
C = 341: The total number of cores.
D = 28,800: The period in timeslots after which an unreferenced preimage may be expunged.
E = 600: The length of an epoch in timeslots.
F = 2: The audit bias factor, the expected number of additional validators who will audit a work-report in the

following tranche for each no-show in the previous.
GA: The total gas allocated to a core for Accumulation.
GI : The gas allocated to invoke a work-package’s Is-Authorized logic.
GR: The total gas allocated for a work-package’s Refine logic.
H = 8: The size of recent history, in blocks.
I = 4: The maximum amount of work items in a package.
K = 16: The maximum number of tickets which may be submitted in a single extrinsic.

JAM: JOIN-ACCUMULATE MACHINE DRAFT 0.1.1 - April 18, 2024 52

L = 14,400: The maximum age in timeslots of the lookup anchor.
M = 128: The size of a transfer memo in octets.
N = 2: The number of ticket entries per validator.
O = 8: The maximum number of items in the authorizations pool.
P = 6: The slot period, in seconds.
Q = 80: The maximum number of items in the authorizations queue.
R = 10: The rotation period of validator-core assignments, in timeslots.
S = 4,000,000: The maximum size of service code in octets.
U = 5: The period in timeslots after which reported but unavailable work may be replaced.
V = 1023: The total number of validators.
WP = 6 ⋅ 220 + 216: The maximum size of an encoded work-package in octets.
WR = 96 ⋅ 210: The maximum size of an encoded work-report in octets.
X: Context strings, see below.
Y = 500: The number of slots into an epoch at which ticket-submission ends.
ZA = 4: The pvm dynamic address alignment factor. See equation 209.
ZI = 224: The standard pvm program initialization input data size. See equation A.6.
ZP = 214: The standard pvm program initialization page size. See section A.6.
ZQ = 216: The standard pvm program initialization segment size. See section A.6.

I.4.5. Signing Contexts.
XA = $jam_available: Ed25519 Availability assurances.
XB = $jam_beefy: bls Accumulate-result-root-mmr commitment.
XF = $jam_fallback_seal: Bandersnatch Fallback block seal.
XG = $jam_guarantee: Ed25519 Guarantee statements.
XI = $jam_announce: Ed25519 Audit announcement statements.
XS = $jam_seal: Bandersnatch Regular block seal.
XT = $jam_ticket: Bandersnatch Ringvrf Ticket generation.
XU = $jam_audit: Bandersnatch Audit selection entropy.
X⊺ = $jam_valid: Ed25519 Judgements for valid work-reports.
X� = $jam_invalid: Ed25519 Judgements for invalid work-reports.

	1. Introduction
	1.1. Nomenclature
	1.2. Driving Factors
	1.3. Scaling under Size-Synchrony Antagonism
	1.4. Document Structure

	2. Previous Work and Present Trends
	2.1. Polkadot
	2.2. Ethereum
	2.3. Fragmented Meta-Networks
	2.4. High-Performance Fully Synchronous Networks

	3. Notational Conventions
	3.1. Typography
	3.2. Functions and Operators
	3.3. Sets
	3.4. Numbers
	3.5. Dictionaries
	3.6. Tuples
	3.7. Sequences
	3.8. Cryptography

	4. Overview
	4.1. The Block
	4.2. The State
	4.3. Which History?
	4.4. Time
	4.5. Best block
	4.6. Economics
	4.7. The Virtual Machine and Gas
	4.8. Epochs and Slots
	4.9. The Core Model and Services

	5. The Header
	5.1. The Epoch and Winning Tickets Markers

	6. Block Production and Chain Growth
	6.1. Timekeeping
	6.2. Safrole Basic State
	6.3. Key Rotation
	6.4. Sealing and Entropy Accumulation
	6.5. The Slot Key Sequence
	6.6. The Markers
	6.7. The Extrinsic and Tickets

	7. Recent History
	8. Authorization
	8.1. Authorizers and Authorizations
	8.2. Pool and Queue

	9. Service Accounts
	9.1. Code and Gas
	9.2. Preimage Lookups
	9.3. Account Footprint and Threshold Balance
	9.4. Service Privileges

	10. Judgements
	10.1. State
	10.2. Extrinsic
	10.3. Header

	11. Reporting and Assurance
	11.1. State
	11.2. Package Availability Assurances
	11.3. Guarantor Assignments
	11.4. Work Report Guarantees
	11.5. Transitioning for Reports

	12. Accumulation
	12.1. Preimage Integration
	12.2. Gas Accounting
	12.3. Wrangling
	12.4. Invocation

	13. Work Packages and Work Reports
	13.1. Honest Behavior
	13.2. Packages and Items
	13.3. Guaranteeing
	13.4. Availability Assurance
	13.5. Auditing and Judging

	14. Beefy Distribution
	15. Grandpa and the Best Chain
	16. Ratings and Rewards
	17. Discussion
	17.1. Technical Characteristics
	17.2. Illustrating Performance

	18. Conclusion
	18.1. Further Work

	19. Acknowledgements
	Appendix A. Polka Virtual Machine
	A.1. Basic Definition
	A.2. Instructions, Basic-Blocks and the Jump Table
	A.3. Single-Step State Transition
	A.4. Instruction Tables
	A.5. Host Call Definition
	A.6. Standard Program Initialization
	A.7. Argument Invocation Definition

	Appendix B. Virtual Machine Invocations
	B.1. Host-Call Result Constants
	B.2. Is-Authorized Invocation
	B.3. Refine Invocation
	B.4. Accumulate Invocation
	B.5. On-Transfer Invocation
	B.6. General Functions
	B.7. Accumulate Functions
	B.8. Refine Function

	Appendix C. Serialization Codec
	C.1. Common Terms
	C.2. Block Serialization

	Appendix D. State Serialization and Merklization
	D.1. State Serialization
	D.2. Merklization

	Appendix E. Shuffling
	Appendix F. General Merklization
	F.1. Binary Merkle Tree
	F.2. Merkle Mountain Ranges

	Appendix G. Bandersnatch Ring VRF
	Appendix H. Erasure Coding
	Appendix I. Index of Notation
	I.1. Sets
	I.2. Functions
	I.3. Utilities, Externalities and Standard Functions
	I.4. Values

